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PREFACE

This book is concerned with the structure of group algebras of
finite groups over fields of characteristic p dividing the order of the
group, or closely related rings such as rings of algebraic integers and in
particular their p-adic completions, as well as modules, and homomorphisms
between them, of such group algebras.

Our principal aim has been to present some of the more recent
ideas which have enriched and improved this beautiful theory that owes so
much to Richard Brauer. In other words, we wish to account for a major
part of what could be described as the post-Brauer period. The reader will
find that once we get started, the majority of our proofs have not appeared
before in any textbooks, and as far as Chapters II and III are concerned,

a number of results and proofs which have not appeared before at all are
included.

We do not at any stage restrict ourselves to particular
methods, be they ring theoretic, character theoretic, etc. In each case
we have attempted to present a proof or an approach which distinguishes
itself in one way or another perhaps by being fast, elegant, illuminating,
or with promising potentials for further advancement, or possibly all of
this at the same time. (We are well aware of the fact that the reader may
not always agree this has been achieved (unless of course he or she
recognizes his or her own proofi)) One point though that has been
important to us is to demonstrate the strong connection to cohomology
which undoubtedly will be strengthened in the years to come. Another point
to make is that we have tried very hard to avoid assumptions on the
coefficient rings involved in the ambitious hope to attract non-specialists,
perhaps even algebraic topologists and group theorists who may feel tempted
to use the tools of modular representations more frequently.

Of course, to make the presentation as smooth, coherent and

self~contained as possible, many classical results are included. Thus we



viii

only require knowledge with the theory of semisimple algebras and modules,
including basic character theory (if this is not present, we recommend
Feit (1967), Serre (1967) or Isaacs (1976)) and elementary facts about
finite groups. Also to advance to the frontier as quickly as possible we
have added suitable hypotheses at an early stage whenever convenient if it
saves us some time. Just as an example, we only prove Krull-Schmidt for
finite-dimensional algebras, not artinian rings in general. Usually, we
will give a reference to Curtis and Reiner (1981) and (1985) for the more
general results.

As the whole idea is to present--whenever appropriate--methods
that Brauer avoided or did not even have at hand, the reader will find
relatively few references to Brauer's work with the exception of more
recent papers such as (1968), (1969) and (1971), and Brauer and Feit (1959).
As references to Brauer's Main Theorems, we use the survey articles (1956)
and (1959) rather than the original papers and otherwise refer to Feit
(1982), which gives a very detailed account of Brauer's work and methods.
The justification is that if we want to improve Brauer's theory
substantially, we have to come up with something completely new. Recent
contributions to which we have devoted particular attention are among others
Alperin and Broué (1979), Benson and Parker (1983), Brauer (1968) and
(1971), Brandt (1982b), Burry and Carlson (1982), Feit (1969), Green
(1974), KnBrr (1979), Landrock (198lc) and Scott (1973). This choice is
no indication of an attempted evaluation of importance. These are simply
the sources we have decided in particular to work with or discuss, leaving
others out which equally well deserve careful attention such as Dade's
deep work on endopermutation modules or Puig (1981) which is very far-
reaching, as well as a number of other topics. Also we do not concern
ourselves with the theory of blocks with cyclic defect groups, nor with
p-solvable groups, which have recently been treated with great care and
detail in Feit (1982). Likewise, Glauberman's powerful and important
Z*—Theorem, which has been indespensable in the classification of the
finite simple groups has not been included for the simple reason that we
have nothing new to contribute which is not already treated in the
literature (see Feit (1982) again, for instance).

It is striking however how many of the deeper results in block
theory were anticipated by R. Brauer and how hard we have to work to
advance further. And we want to point out that some of Brauer's later

work (quoted above) has been a major source of inspiration to a number of
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people over the last decade, which is the reason why a major part of
Chapter IIT, Section 8, is devoted to these papers.

In 1971, Paul Fong gave a well-composed and inspiring course
at Aarhus University on representation theory (see Fong (1971)), which
in turn was partly inspired by Dade's lecture notes (1971) and Green's
fundamental work in the sixties. Since 1975, I have given a number of
lecture series at Aarhus on this subject, which gradually have developed
from being close to Fong's lecture notes into part of the present book.
Other direct or indirect sources of inspiration have been Michler (1972)
and in particular Green (1974) apart from a great deal of Green's work in
the sixties and seventies, which perhaps is the major general source of
inspiration for Chapter II. Also I have profitted a lot from useful
comments by and discussions with my students and others who have attended
my lectures, in particular, Ivan Damggrd and Carsten Hansen from the first
category and Dave Benson from the second, all of whom helped me avoiding
considerably more blunders than present now. Other results or approaches
are inspired from my collaboration with G. Michler and discussions with
J. L. Alperin, H. Jacobinski and D. Sibley and I have enjoyed comments from
K. Fuller who read part of Chapter I and D. Burry who read part of
Chapter II. The first version of Chapter II similar to the first half of
the present was conceived and presented during my visit at University of
Oxford in the spring of 1981 and I want to thank Michael Collins warmly
for making this possible, and the British Science and Engineering Council
for its financial support. But the major part of the final version was
written during the academic year 1982-83 at the Institute for Advanced
Study, Princeton. I am extremely grateful to the Institute, to
NSF Grant MCS-8108814 (AOl), and to Aarhus University for the help and
financial basis for my stay there. And I want to thank Marianne for
her support and understanding as well.

Finally, I wish to thank Peggy Murray (who typed Chapter II)
and in particular Kathy Lunetta (who typed the rest) for their excellent,
fast and reliable typing as well as their patience with me and my
manuscript.

A few remarks on notation and basic assumptions: If A 1is a
ring, AA means A considered as a right A-module, and except for a
very few cases, a module is always right and finitely generated, free over
the ring of coefficients. Also, if G 1is a group and X CG, a g X means

-1 . . .
a® = g ag €& X for some g & G. Likewise if H, K < G, H < K means

G



X

it < K for some g € G. Furthermore, H/G means an arbitrary right
transversal of H in G, G\H an arbitrary left and H\G/K an arbitrary
transversal of double coset representatives.

One more thing: As one tool is used over and over again, it
only seems fair to express our gratitude towards this as well. Therefore

in more than one sense of the work, this book is dedicated to the trace

map.

Princeton, New Jersey
June, 1983

Peter Landrock



CHAPTER I. THE STRUCTURE OF GROUP ALGEBRAS

1. Idempotents in rings. Liftings.

In this section, A 1is an arbitrary ring. Recall that an
. . 2 .
element O # e € A is called an idempotent if e = e. Two idempotents

and e, are said to be orthogonal if = 0, and an

°1 2 €1%2 T %251
idempotent is called primitive if it is not the sum of two orthogonal

idempotents.

Definition 1.1. Let A be a ring and M an A-module. Then
¥ is said to be decomposable if there exist non-trivial submodules M1

and M2 of M such that M = Ml 8 MZ. Otherwise, M 1is called

indecomposable.

Lemma 1.2, Let A be a ring and e & A an idempotent. Then

eA 1s indecomposable as an A-module if and only if e 1is primitive.

Proof: One way is trivial. Conversely, assume eA = A

1 2
where 0 # Ai is a right ideal for i = 1,2. 1In particular, e = e + e,
for some e, e Ai’ i =1,2. Moreover, ee, = e, for 1 =1,2, as
e 6 eA. Hence
(1) ee=(e-e)e=e—e2eAﬂA=0
172 2772 2 2 1 2 :
Thus e.,e, =0 d e2 = e So b tr =0 d 2.
187 = an 5 = €y 0 by symmetry, eje, = and e] =e, as

well., Thus e 1is not primitive.

Definition 1.3, By an idempotent decomposition of 1 in A4,

we understand a set of pairwise orthogonal idempotents SERRERL such

T

that 1 = .Zl e;. An idempotent decomposition is called primitive if all
i=

the involved idempotents are primitive.



Remark., The importance of idempotent decompositions is of
course, in view of Lemma 1.2, that they corresgond to direct sum
t
decompositions. If A, = ©® A., then 1 = I e., where e.e A., 1is
A i=1 1 i=1 1t 1 1
necessarily an idempotent decomposition, and vica verca. But even more

holds, namely

Theorem 1.4 (Fitting). Let A be a ring and M an A-module.

Denote the endomorphism ring of M over A by E. Then

i) There is a one-to-one correspondence between idempotent
decompositions 1 = I e. in E and decompositions M = & M.,
. o iel 1 . o iel 1 .
where I 1is finite, characterized by the fact that ej is the projection

of M onto Mj with kernel & MNM..

i4j 1t
11) Let M = Ml & M2 = N1 [°] NZ’ and let e be the
projection onto Ml with kernel MZ’ f the projection onto N1 with
kernel N2. Then Ml = N1 if and only if eE = fE as E-modules,

iii) Let e €& E be an idempotent. Then e(M) 1is indecom-

posable if and only if eE 1is indecomposable.

Proof: 1) and 1ii) are obvious.

ii) Let ¢ : Ml > N1 be an isomorphism. We may consider ¢
as an element of E by setting @(MZ) = 0. Then ¢ = fpe. We therefore
define & : eE > fE by ¢(a) = da. As $ 1s an isomorphism, it easily
follows that ¢ 1is as well. Conversely, let ¢ : eE > fE be an

isomorphism of E-modules. Let ®¢(e) = faf, C(e@e) = f, where Qf, ¢e e E.

Then f¢ce = (ede = d(e) = fo,. Similarly, eo £ = eo_, as
@(eQef) = @(e¢e)f = f = @(e®e). Also, f = @(e@e) = Q(e)¢e = fop0,

Similarly, e = e¢e¢f, as Q(e¢e¢f) = @(e¢e);f = fo; = ®(e). But then

(2) (f¢f)(e¢e) = foo = f
(3) (ed )(f4;) = ep Op = e

which proves that f®f : Ml > N1 is an isomorphism.

We end this section with a very important theorem on lifting

idempotents., Recall that an element v € A 1is called nilpotent if there



. 1
exists n e N such that v = 0.

1 +v 1is a unit,

If v

is nilpotent, then obviously

Theorem 1.5. Let A be a ring and N a nilpotent ideal of
A. Then
i) Let e be an idempotent of A = A/N. Then there exists
an idempotent e in A such that e + N = e (& is said to be lifted
to e)., If e' 1is another such idempotent, there exists v €& N such
that
' -1
(4) e' = (1+v) ~ e(l+v).
ii) Units of A always lift to units of A.
- t _ -
iii) Let 1 = 'Zl e be an idempotent decomposition in A.
1=
t
Then there exists an idempotent decomposition 1 = | 1 e, in A such
1=
- t
that e, = e, + N for all i. Again, if I e! 1is another such
1 1 i=] 1
decomposition in A, there exists v e N such that

(5) e!

i =

for all 1.
iv) let ee A
idempotent such that e + N = e.

is primitive.

Then e

(1+v)_l ei(1+v)

be an idempotent and let

e€ A be an

is primitive if and only if e

under the additional

Proof: We first prove the theorem
assumption that N2 = 0.
i) Let f €& A such that f + N =
some y & N. Furthermore, for any x € N,
2 2
(6) (f+x)° = £° + xf + fx = (f+x) - x +
Thus we want to choose x such that y = x - xf
magically choose x = (1-2f)y. As y = f2 - f,

M|

Then fz = f +y for

+ xf + fx.
fx. To obtain this, we

commutes with f and



N x - xf - fx = (1-2f)y - 2f(1-2f)y

(1 +4£% - 4f)y

(l+4y)y = vy

as y € N. Thus e = f + (1-2f)(f2—f) indeed is an idempotent in e.
Next let e' be another idempotent in e. Hence e' = e + z
for some z g N, Then e + z = e + ez + ze and thus (l-e)z = ze, which

forces eze = 0. Likewise, (l-e)z(l-e) = 0. But now, for any r & A,
(8) r = ere + er(l-e) + (l-e)re + (l-e)r(l-e).

Thus (8) reduces to

9 z = ez(l-e) + (l-e)ze

for r = z. To finish, we need ve& N such that

(10) e +z = (l-v)e(l+v) = e - ve + ev

since vVev € N2 = 0. This forces z = ev - ve. So this time, we define
(11) v := ez(l-e) - (l-e)ze

which has the required property by (9).

ii) Let u + N=1u for u a unit in A. Then there exists

v €A such that uv =vu =1 with v=v +N. Thus uvs=1+y and
vu =1+ z for suitable y,z € N, Hence uv and vu are units, which

in turn forces u to be a unit.

iii) We use induction on t, the first step being 1i).
Furthermore, by i) again, there exists an idempotent e € A such that
e+ N = gt . Let A' = (1—et)A(1—et) which is a subring of A with

1 - e as unity. Moreover, e.r =re = 0 for all r € A'. The

homomorphism A + A induces a homomorphism of A' onto (I—Et)g(i—gt)

with kernel W' = A'( N. 1In particular, N'2 = 0. However, ey

t-1
all lie 1in (T—Et)A(T—gt), and I-e = I Ei i1s an idempotent
i=1
decomposition in this ring. Hence induction yields the existence of an

%1



idempotent decomposition 1 - e_= T e. in A', thus proving the first

part of iii).
To show uniqueness in the sense as stated in iii), we again

apply induction on t and as before, i) establishes the case t=1l.

Moreover, 1) allows us to assume in the general case that e, = eg.

Induction now yields a v e N' € N such that (l—v)ei(l+v) = e, for all

: _ ' = = — = =
i <t-1. But as veA', eV = ve, 0. Hence (1 v)et.(1+v) e e,
as well.

iv) One way is trivial. Conversely, assume e = El + EZ
with El and EZ orthogonal idempotents. Now e 1s the unity of eAe

and A > A induces a homomorphism of eAe onto ehe with kernel

N ede. Then i) asserts that e = fl + f2 can be lifted to eAe, and

e 1s not primitive.

Finally, if N 1is an arbitrary nilpotent ideal with N° 0,

we first lift to A/N2 and apply induction on N' to lift to A/Nr = A,

2. Projective and injective modules.

For the convenience of the reader, we recall the basic
properties of projective and injective modules.
Let A be a ring. Then the direct summands of AA have

particularly nice properties. One of them is the property defined in

Defiuition 2.1. Let A be a ring. Then an A-module P is
called projective if for any two A-modules M and N, and A-homomorphisms
u : M> N, which is surjective, and ¢ : P > N, there exists a

homomorphism vy : P » M such that

(n ¥ €

commutes.

P and P A-modules.

Theorem 2.2. let A be a ring, Pl, 2

Then we have



1) Any free A-module is projective. In particular, AA is

a projective A-module.

ii) P ® P2 is projective if and only if Pi is projective,

i=1,2.
iii) P 1is projective if and only if there exists an A-module

M such that P @ M 1is free.

iv) For any A-module M, there exists an exact sequence

0> N~ PM +M~> 0 with PM projective.

P is projective if and only if every exact sequence

0>N->M=+P~>0 splits.

Proof: The reader is probably already familiar with these
homological trivialities. Otherwise he or she is urged to produce the

proofs.

Having defined projectivity one may feel tempted to discuss
the dual property, injectivity. We shall see later that for group algebras
they are identical., Nevertheless, it is quite convenient to be aware of
the formal difference. Moreover, if we turn to algebraic groups over

infinite fields, there really is a difference.

Definition 2.3. An A-module I 1is called injective if for
any two A-modules M and N, and A-homomorphisms * : N > M, which is
injective, and ¢ : N » I, there exists a homomorphism ¢ : M+ I such

that the following diagram commutes

0——N———I
(2) €
b
I
Theorem 2.4. Let Il’ 12 and I be A-modules., Then
i) I1 @ 12 is injective if and only if Ii is injective,
i=1,2.

ii) TFor any module N there exists an exact sequence

0> N~ IN > M=> 0 with IN injective.



iii) I 1is injective if and only if every exact sequence

0~»I~>M~>N>0 splits.

Proof: See the proof of Theorem 2.2. (ii) needs some

elaboration.)
We will in the following use these basic properties of

projective and injective modules without giving special reference, as a

main rule,

3. The radical and artinian rings.

A discussion of the following definitions and basic results
may be found in a great number of books on ring theory, of which Artin,
esbitt and Thrall (1944) is the classical source., For a more contemporary
treatment which is in concurrence with our discussion here, we suggest
Anderson and Fuller (1973). Anyway, before embarking on the study of this
section, the reader should make sure to be familiar with the theory of

semisimple rings and modules.

Definition 3.1. Let A be a ring. The radical of A, which
w11l be denoted by J(A), 1is defined as the intersection of all maximal

right ideals of A.

Lemma 3.2. Let A be a ring. Then
i) Let E be a simple A-module. Then EJ(A) = 0.

ii) Let x € A and assume Ex = 0 for all simple A-modules

E. Then x e J(A).

1i1) J(A) 1is a 2-sided ideal.

Proof: Let E be an arbitrary but fixed simple A~module, and
choose v e E with vA # 0. Then a + va defines a module homomorphism
A > E. Denote the kernel of this map by ME. As E 1is simple, ME is
a right maximal ideal in A, and thus contains J(A) by definition. This
proves 1) and ii), which together characterize J(A) as the set of elements

in A which annihilates all simple A-modules, from which 1ii) follows.



Definition 3.3. Let A be a ring, M and A-module. Then M
is called (right) artinian, if any descending chain of submodules becomes
stationary at some point. M 1is also said to satisfy the d.c.c. (descending
chain condition), or the minimal condition.

Likewise, A 1is called a right (left) artinian ring, if A
(AA) is artinian. If A 1is right and left artinian, A 1is called

artinian.
Definition 3.4. A descending chain
L) M=MDMD...OM =0

0 1

of submodules of the A-module M 1is called a composition series if

Mi/Mi+1 is simple for all 1i.

Remark. If M 1is not finitely generated, M may not have a
composition series, even if A 1is right artinian. In fact, if M is
not finitely generated, M may not even have a maximal submodule.
However, if M 1is finitely generated, there is no problem as we proceed

to see. The point is

Lemma 3.5. Let A be a ring, and let M be a finitely
generated A-module. Then M has a maximal submodule. In particular,

MI(A) € M.

Proof: The reader is probably familiar with the fact that
the first statement follows from Zorn's lemma. Now the second follows

from Lemma 3.21).

Theorem 3.6. Let A be a right artinian ring. Then
i) J(A) 1is nilpotent.

ii) Let M be a finitely generated A-module. Then M/MJ(A)

is semisimple.

iii) A/J(A) 1is a semisimple ring.

Proof: 1) 1f J(A) 1is not nilpotent, there exists an ne N

with J(a)" = J(A)n+l # 0 by definition. Hence there exists a g J(A)



with aJ(A)n # 0. Moreover, as A 1s artinian, we may even assume that
1 = aA, T a minimal ideal such that IJ(A)n # 0. Thus in fact
aA = aJ(A) by minimality of I, as aJ(A)n+1 = aJ(A)n, and thus
aAJ(A) = aA, a contradiction by Lemma 3.5.

To prove ii) and iii), it suffices to prove that A/J(A) 1is

a2 semisimple A-module. But as A is artinian, there exists finitely many

T
right maximal ideals Ml""’Mr such that J(A) = N Mi by the

i=1
characterization of J(A) 1in the proof of Lemma 3.2. Hence the canonical
T
nomomorphism A/J(A) > @ A/Mi is injective.
i=1

Corollary 3.7. Let A be a right artinian ring and M a
finitely generated A-module. Then MJ(A) 1is the unique minimal

submodule with M/MJ(A) semisimple.

Notation: In view of Corollary 3.6, we set J(M) := MI(A) and

call this the radical of M,

Corollary 3.8. Let A be a right artinian ring and M a

finitely generated A-module. Then

i) M 1is isomorphic to a direct sum of indecomposable

modules.

ii) M has a composition series.

Proof: This follows immediately from the fact that J(A) 1is

nilpotent and A/J(A) and M/MJI(A) are semisimple, as does

Corollary 3.9 (Nakayama's lemma). Same assumptions as above.

Let L Dbe a submodule of M such that L + MJ(A) = M, Then in fact
L =M.

The following is now straightforward though tediocus to
establish using the fundamental homomorphism theorem and we (wisely) omit

the proof.

Theorem 3.10 (Jordan-H8lder). Let A be a ring and M an

A-module. If M opossesses a composition series, any two composition
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series contain the same number of members, and the simple factor modules

arising from these series may be arranged to be pairwise isomorphic.

Definition 3.11. Let

where Pi is indecomposable.
artinian, as we have just seen.)

indecomposable modules (p.i.m.'s) of A,

It is now clear from Lemma 1.2 that a
ring A, with the above property, is a p.i.m. if

a primitive idempotent e such that P = eA.
Before we prove a number of important

describing the p.i.m.'s of a right artinian ring,

A be a ring, and assume

(This, for instance, holds if A

t
A = ® P.,
At
is right

These summands are called the principal

right ideal P 1in a

and only if there exists

structure theorems

we need the following

important consequence of Theorem 1.5:

Theorem 3,12. Let A be a right artinian ring. Then
t s

i) Let 1= [ e, = I f. be primitive idempotent
i=1 =1

decompositions. Then s = t and there exists a unit u in A such

-1 . . .
that u e.] = f where ¢ ‘is some permutation of

{1,2,...,s}.

- f i
o(i) or all i,

ii) Let e,f A be idempotents. Then eA = fA if and only

. . . -1
if there exists a unit u €& A such that u "eu = f.

Proof: We assume these results are familiar to the reader if
A 1s semisimple. But then i) follows from Theorem 1.5 while for ii) we
have to remark in addition that if eA ~ fA, then eA/eJ(A) ~ fA/EJ(A).
Corollary 3.13. Let A be a right artinian ring. Then
i) The p.i.m.'s of AA are uniquely determined up to
isomorphism. In other words, if
(2) A~ & P, = @ Q.
iel jeJ J
where the Pi 's and Qj 's are all indecomposable, then there exists a

bijection ¢ : I + J such that Pi = Q for all 1.

(i)

ii) A finitely generated indecomposable A-module is projective

if and only if it is isomorphic to a p.i.m. of AA.
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Proof: i) is just a reformulation of Theorem 3.12i) in view

of the remark following Definition 1.3.

ii) follows from the general properties of projective modules.

The following result is of extreme importance in what follows.

Theorem 3.14. Let A be a right artinian ring and {ei} a

set of primitive idempotents, Set P, = eiA.

1

Then

i) Pi contains a unique maximal submodule, namely eiJ(A)~

ii) The following are equivalent

a) Pi/eiJ(A) and Pj/ejJ(A) are isomorphic

b) P, and Pj are isomorphic

c¢) There exists a unit
—1- -

u e.,u = e,, where
1 ]

d) There exists a unit

u
€

u

in A/J(A) such that

RS J(A) for k = 1,j]

k -1

in A such that u eju=e,

Proof: 1) Let M be a maximal right ideal in Pi. Then

Pi/M is a simple A-module. 1In particular,

Lemma 3.2i). However, as e, = e, ¢+ J(A)

eiJ(A) = PiJ(A) C M by

is a primitive idempotent in

a/J(A) and eiA N J(A) = eiJ(A), we have that eiA/eiJ(A) is simple.

Thus, in fact, eiJ(A) = M.

i1) The equivalence of b) and d) was proved in Theorem 3.12,

and ¢) and d) are equivalent by Theorem 1.5.

Finally, the equivalence of

¢) and a) is a well-known property of semisimple rings.

In particular, we have proved

Corollary 3.15. There is a one-to-one correspondence between

the isomorphism classes of the p.i.m.'s of

of the simple A-modules.

A

4, Cartan invariants and blocks.

and the isomorphism classes

We proceed to define the so-called Cartan invariants of an

arbitrary artinian ring.

]
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Definition 4.1. Let e e be primitive idempotents of

IR
the artinian ring A such that {eiA} form a complete set of represen-
tatives of isomorphism classes of p.i.m.'s of A (in particular, they are all
orthogonal to each other). Let Pi = eiA, and set Ei = Pi/eiJ(A).

The Cartan invariant €53 is defined as the multiplicity of

Ej as a composition factor in Pi' The m x m matrix {cij} = (C 1is

called the Cartan matrix.

Later we shall prove several important results on Cartan
invariants for group algebras. Here, in the general case where much less

holds, we only prove

Lemma 4.2. The principal indecomposable Pi has a composition

factor isomorphic to Ej if and only if Piei (= eiAej) # 0.

Proof: Assume Piej # 0, and let 0 # x e Piej. Then
xe. = x, and we may define an A-homomorphism % : Pj > PiejA cP by
6(v) = xv. Since Pj has a unique maximal submodule, namely ejJ(A), the
kernel of & must be contained in ejJ(A), and thus C(Pj)/$(ejJ(A)) = Ej
is a composition factor of Pi.

Conversely, if Ej is a composition factor of Pi’ there
exists a submodule M of Pi with a submodule N such that M/N = Ej.
As Pj is projective, the map Pj > Ej may be factored through M. 1In

particular, there exists a non-trivial homomorphism ¢ : P. > Pi' Hence

@(ej) # 0. But then Q(ej) = b(ej)ej # 0 which shows that Piej # 0.

Definition 4.3. Let Q1 and Q2 be p.i.m.'s of A. Then
Q1 and Q2 are said to be linked, if there exists a sequence of p.i.m.'s
Q) = PyPyy e, P

in common for all 1i. For notation, we use Ql = QZ'

=Q such that P. and P, have a composition factor
2 1 i+l

Clearly, = 1is an equivalence relation on the set of p.i.m.'s
of A. Let Pl,...JPr denote the equivalence classes under =. By the

block Bi of A associated with Pi, we understand

(1) ]Bi={ZQ§Q(-_1Pi,QgA}.
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Theorem 4.4. The blocks of A are indecomposable 2-sided

ideals of A and artinian rings. Moreover,
r
\2) A= 8 B

and (2) is the unique decomposition of A 1into a direct sum of indecom-
posable ideals. 1In particular, if e is the unity of Bi, then

Epseesye are the only centrally primitive idempotents in A,

Proof: By definition, A = L Bi, and

3) B, = {fea |er e P, e a primitive idempotent}
whnich is a right ideal. Moreover, if e € Ei and f € Bj are primitive
‘dempotents and 1 # j, Lemma 4.2 asserts that eAf = 0, by definition of

5locks. Hence (3) yields that B, Bj = 0. Consequently,
4) MB. = (IR)B, B, B, CB,

and thus Ei is in fact a 2-sided ideal. Next we claim that the sum
:Bi is direct. Indeed, this is a standard argument: Let 1 = Zei, where

. € B., and let 0 = Za,, where a. € B.. Then
i i i i i
(s) a, = a.(Ze,) = a.e. = (Za.)e. =0
J ] 1 J ] 1]

for all j, as EiBj =0 for 1 # j. It is now straightforward to show
that e is a unity of Bi and that Bi is an artinian ring. Finally,
let A= 0@ &% where ® and & are 2-sided ideals and % is
indecomposable as such. Let 1 =e + f with e e @ and f €& B . Again
it follows that a#&=X0 = 0, and consequently f is a central
idempotent, and primitive as such as @ 1s indecomposable. Hence there

exists exactly one 1 with eif # 0. Thus e, = f as they are both

primitive, and & = Bi, from which the rest of the theorem follows.

We now leave the general theory of artinian rings to concentrate
first on finite dimensional algebras and then group algebras and, to some

extent, symmetric algebras.
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5. Finite dimensional algebras.

First of all, we want to make the convention that for the rest

of this book, a module is finitely generated.

In this particular section, we furthermore assume A to be a
finite dimensional algebra over a field F. Obviously, A 1is an artinian

ring then, and we will use the notation of Definition 4.1.

An important point we want to make in our whole discussion is
how a number of crucial properties of a module M over A are closely
related and often entirely determined by those of its endomorphism ring.
We have already seen a demonstration of this in Theorem 1.4.

For M and N A-modules, we denote HomA(M,N) by (M,N)A.

Lemma 5.1. With the notation above, we have
. A, . . .
i) M 1s a finite dimensional algebra over F.

1) J(0Y D e LMY | 00D M)},

Proof: 1) 1s trivial,

ii) Let Yy denote the right hand side of ii), which
obviously is an ideal. Let ¢ e T for some r. Then (M) S’MJ(A)r

and thus YU is nilpotent, which proves that W SJ((Id,M)A).
Remark. Equality does not always hold in ii) above.

Recall there is a one-to-one correspondence between idempotent

decompositions 1 = Zei in (M,M)A and decompositions M = 8 l,,
i

characterized by the fact that e, is the projection of M onto 1, witt

kernel ® M.. Also (M,M)A is artinian, of course.
J#i

Theorem 5.2. Same notation as above. Then

i) (Krull-Schmidt.) The indecomposable direct summands of

M are uniquely determined up to isomorphism. ln other words, if

(1 M=~ & M ~ @8 M
ier Y jes
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where the M! 's and MY 's are indecomposable A-modules, there exists a
1 ]

.. “ ~ . 'Z "
bijection ¢ : I » J such that Mi M@(i)

i1) Let M = M1 @ MZ = N1 -] NZ’ and let i

be the corresponding idempotent decompositions in (M,M)". Then M = N1
if and only if there exists a unit u € (M,M)A such that e = u_lfu.

for all 1.

= e+l-e = f+1-f

Remark: Krull-Schmidt in fact holds even if A 1is only
(right) artinian, but then the proof is no longer just an application of
Theorem 3.12 (see for instance Curtis and Reiner (1981)), as we then lack

. . A, ..
the information that (M,M) is artinian.

Proof: The decomposition in (1) corresponds to primitive
. oo . A .
idempotent decompositions in (M,M)" . However, as we saw in the proof of
Theorem 3.12 any such two decompositions are conjugate via a unit in

(M,M)A, from which 1) follows.

ii) By lheorem 1.4, it suffices to prove that this holds for
. A . .
direct summands of EE’ where E = (M,M)". But again this follows from

Theorem 3.12.
As an application of Theorem 3.14, we get

Lemma 5.3. Same notation as above. Then M 1is indecomposable

if and only if (M,M)A/J((M,M)A) is a division algebra over F,

Remark. A more general result, which again is beyond the scope
of this book, states that if A 1is a ring and M 1s an A-module with a
composition series, then M 1is indecomposable if and only if (M,M)A is

local (see Curtis and Reiner (1981)).

Lemma 5.4. Let e & A be an idempotent and let M be any
A-module. Then

(2) (eA,M)A = Me

as F-spaces.
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Proof: We define T : (eA,M)A + M by T(¢) = #(e). Then T
is an P-linear map. Moreover, ¢(e) = 0 forces &(e)a = ¢(ea) = 0 for
all aeg A, thus forcing ¢ = 0, i.e., T 1is injective. Furthermore,
o(e) = ¢(e)e € Me, so T maps into Me. Conversely, if x € M, we
define ¢, € (eA,M)A by ¢x(a) = xa. Then T(¢x) = ¢x(e) = xe. Thus T
is an isomorphism.

Corollary 5.5. Let e & A be an idempotent. Then

(3) (eA,eA)A =~ ehe

and T : (eA,eA)A + eAe defined by T(¢) = ¢(e) 1is an F-algebra

isomorphism.
Lemma 5.6. Let e € A be an idempotent. Then
(4) J(ede) = eJ(A)e = J(A) N ene.

Proof: The last equality is obvious. Moreover, eJ(A)e 1is a

nilpotent ideal in eAe, hence contained in J(eAe). Finally,
T r r
(5) (AJ(ehe)a)” = (AeJ(ehe)eA) = AJ(ehe) A.

Thus J(eAe) generates a nilpotent ideal in A, which shows that

J(ehe) c J(A).

This enables us to improve Lemma 5.1 for modules of the form

eA, e an idempotent.

Corollary 5.7. Let e € A be an idempotent. Then
6) J((eh,en)™T € {6 € (ea,en)® [olen) cea n I(a)"}
for all r, and equality holds for r = 1.

Proof: By Lemma 5.6,

(7) J(eae)™ = (J(a) N eae)” € I(A)' N ede.
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AT, . T
Moreover, ¢ € J((eA,eA)’) if and only if ¢(e) J(eAe) by
Corollary 5.5, from which (6) follows. The equality for r = 1 1is then
obtained from Lemma 5.1.

Lemma 5.8. Assume F is a splitting field of A/J(A), and
let Ei be a simple A-module. Let M be an arbitrary A-module, and
denote the multiplicity of Ei as a composition factor of M by a;-
Then
(8) a, = din ((2, 1))

i Mg i’
where Pi is the p.i.m. corresponding to Ei'
Proof: Recall that by Theorem 3.141i) and Schur's lemma,
A
(9) (PL,E)" = F
as an F-space. Let

(10) M=MDMD...OM =0

be a filtration of M with Mj/Mj+l simple for all j. Choose j1

maximal so that no composition factor of M/M, is isomorphic to Ei. It
immediately follows that 1

A . LA
(11) W o:= (Pi,M) = (Pi,Mj )

1

as any factor module of Pi has Ei as a composition factor. Hence

induction on dimFM allows us to assume that j1 = 1, and moreover that

the dimension over F of wl H (Pi,Mz)A is ai—l. Furthermore, as Pi
is projective, there exists ©1 € W with ¢1 € wl, or in other words
(12) (0, (P)+M)) /M, = Ml/M2 =B,

Now let 5 € W be arbitrary. Then (9) and (12) imply the existence of
), € F such that
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(13) ([@—A¢l}(Pi) + M2)/M2 = 0.

Hence ¢—X¢l € W and we are done.

1’
Corollary 5.9. Assume F is a splitting field of A/J(A).

Then the Cartan invariants °i; of A satisfy

. A
(14) ci5 = dlmF((Pj,Pi) )

with the notation of Section 4.

Remark. The proof above shows that in general, if F 1is

arbitrary, then
(15) < dim ((2,,B)%)
€ij = TRy

and equality holds if and only if (Ei’Ei)A = F, 1l.e., if and only if F
is a spliting field of the Wedderburn component of A/J(A) corresponding

to E..
1

6. Duality.

We are now ready to take advantage of the fact that a group
algebra over a finite group not only is a finite dimensional algebra but
has a basis which forms a group. The following simple and yet extremely
important definition takes advantage of that fact. It immediately leads

us to a strong property of projective modules of a group algebra.

Definition 6.1. Let R be a commutative ring and G a finite
group. By an R[G]-module M, we will always mean a module which considered
as an R-module is free and finitely generated.

*
3y the dual or contragredient, M of M, we understand

(1) (M,R)R

with the following action by G: for all ¢ € (M,R)R and all g & G, we

define
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2) (08) (x) = d(xg 5

. . R
for all x € M. (The reader is urged to check that this makes (M,R)
into an R[G]-module of the same rank over R as M.) Finally, M is

*
called self-dual if M = M as R[G]-modules.

Zxample: Let R =C, and let X be the character afforded by

*
M. Then the character of M 1is X
We have the following evident properties of dual modules.

Lemma 6.2. Same notation as above. Then
. *
i)y M) =M.
.. * * *
ii) (MeN) =M @N .
*
iii) M 1is indecomposable if and only if M 1is indecomposable.

* *
iv) M =N if and only if M = N .
Proof: Exercise.

Recall that for a group G, G and c°P are isomorphic, and

g > g is an isomorphism. For the same reason, we have

Theorem 6.3. Same notation as above. For any g & G, define

9 :R[GI >R b
Dg y

3 5 = 4
(3) ¢g( &gg) dg
*
Then (R[G]) = 2R¢g’ and (Qg)h = Qgh Moreover
(4) z >z
agg Qg¢g

. . N *
is an R[G]-isomorphism between R[G] and R[G] . In other words, R[G]

is self-dual.

Proof. Only (4) has to be checked. But
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(5) (Zo g@)h = Zo ;8 + Lo .0
g gh 1 gh 17g

while

6 (Z )h = % = Zo .

(6) cxg¢>g cxnggh gh_ldDg

In fact, a more general result holds. Recall that if H <G
. . 4 . .
and N 1is an R[H]-module, the induced module N G, which is an
R[G]-module, is defined as N sR[H]R[G], where R[G] 1is considered as a

left R[H]-module. Alternatively, N is the R-module ] Nag, ,
gie H\G

where H\G denotes an arbitrary right transversal of H in G, with the
following R[G]-action. For ge& G and 1 arbitrary, let g8 = hjgj.'
Then (x 8 gi)g 1= xhj 8 gj for all x & N.

The following generalization of the fact that a group ring is
self-dual is straightforward to check, but very important. It is actually
a special case of a mere general fact (see Chapter II, Lemma 1.2). We

therefore omit the proof.

Theorem 6.4. Let H < G and let N be an R[H]-module. Then

* AG

(7 ) Gy*.

= (v

We now replace our arbitrary ring R by a field F. Consider

any exact sequence of F[G]-modules
(10) 0+X+>Y> 2> 0.

As we are dealing with vector spaces, the definition of a dual module

implies that (10) induces an exact sequence
* * *
(11) 0«X «Y <«2Z <«0.

In particular, Theorems 2.2v) and 2.41ii) together with Lemma 6.21i) yield

i) below.

Lemma 6.5. Let M be an F[G]-module. Then

*
i) M is projective if and only if M 1is injective.
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ii) There is a one-to-one reversing correspondence between
*
submodules of M and factor modules of M , and vica versa, induced by

duality.

Using this and Theorem 6.3, we now obtain our first main goal

of this section.

Theorem 6.6. An F[G]-module is projective 1f and only if it is

injective.

Proof: Let F[G] = OPi, where Pi is a p.i.m. for all 1.
*
As Hom 1is additive, Theorem 6.3 implies that F[G] = QPi as well. Thus

*
P, is projective for all i, and we are done by Lemma 6.5i).

Corollary 6.7. An F{G]-module is projective if and only if its
dual is projective. In particular, a p.i.m. of F[{G] has a unique maximal

submodule and a unique minimal submodule.
From this result, a very natural question arises: Is there any
connection between the unique simple factor module and the unique simple

submodule of a p.i.m. of F[G]? And indeed there is, as we proceed to show.

Theorem 6.8. The unique simple factor module of a p.i.m. of

F[G] 1is isomorphic to the unique simple submodule of that p.i.m.
The proof depends on the following observations:

Definition 6.9. By the augmentation map of F[G], we

understand the linear map X : F[G] + F given by
T = .
(12) )\(Lﬁgg) ay

This map has the following important properties.

Lemma 6.10. i) Ker X does not contain any left or right
ideal of F[G].

ii) For all a, b € F[G], XA(ab) = A(ba).
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. . , -1
Proof: 1) Assume A(aF[G]) = 0. 1In particular, Ai(ag *)

for all g e G. But k(ag_l) = Qg’ where a = Zagg, which forces a = 0.
ii) Let a = Zugg and b = Eth. Then

(13) Alab) = L o 3 = I Bha = x(ba).
hg=1 8

Proof of Theorem 6.8. We may now prove the claimed property of

a p.i.m. P of F[G]. Let e be a primitive idempotent in F[G] with
P = eF[G], and denote the simple submodule of eF[G] by El’ the simple
In particular, eE, = E

factor module by E It suffices to prove that

Ele # 0. Indeed, ai we saw in Lemma 5.4,1thislforces El = EleF[G] to be
a homomorphic image of eF[G], and now uniqueness of E1 and E2 forces
El = E2. Finally, that in fact Ele # 0 is an easy consequence of Lemma
6.10: Choose by i) a & E1 with A(a) # 0. As a = ea, 11) states that

A(ae) = A(a). Hence A(ae) # 0 and thus a priori ae # 0.

Remark: The only fact needed to prove Lemma 6.5 was that
duality preserves exact sequences. If we therefore return to R[G] for an
arbitrary commutative ring R, the dual (11) of an exact sequence (10) will
indeed be an exact sequence if the image of X in Y 1is a direct summand
of Y as an R-module. Thus projective R[G]-modules are injective as well
in the category of free R-modules. This will be further explained in

Section 14.

/. Symmetry.

Finite algebras with the property that a module is projective
if and only if it is injectiveare called quasi-frobenius. We do not intend
to discuss this further here, but refer the reader to, for instance, Curtis
and Reiner (1966) for positively all aspects of this definition. e
mention one interesting connection to group algebras though, namely a more
recent result of Green (1978b), based on a theorem due to Sawada (1977),
which states the following: Let G be a finite group with a split
(3,N)-pair, and let U = BN N, which is a Sylow p-subgroup of G. Then
(ITG’ IfG)F[G]’

trivial F[U]l-module, is a quasi-frobenius algebra.

where F is a field of characteristic p and I 1is the
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Here we want to consider a slightly more restricted class of
algebras, namely symmetric algebras. The motivation for this is first of
all, as we shall see, that the endomorphism ring of any direct sum of
p.i.m.'s of a group algebra is a symmetric algebra.

Readers with a primary background in ring theory may have been
caught by slight surprise, when we defined the dual of a right module as a
right module. The standard way of defining the dual of a right module of a

finite dimensional algebra is the following.

Definition 7.1. Let A be a finite dimensicnal algebra over
*
the field F, and let M be a right A-module. By the (F-) dual M of
F .
M, we understand (M,F) with the following left action of A: For all

o & (M,F)F and all a e A, we define
) (az)(m) = =(ma)
for all m e Il

We may change this to a right module exactly in the case when
A = AOP, the opposite ring of A, 1in the following obvious way: If
op : A~ a%P denotes the isomorphism, we define (%a)(m) = s(m op(a)),
which is exactly what happened in the previous section. Thus, the fact
that we, in certain cases, may introduce the dual of a right module as a
right module rather than the general left is completely irrelevant as far
as the properties listed in Lemmas 6.2 and 6.5 are concerned. For the

sake of completeness, we state

Proposition 7.2, Same notation as above. Consider any exact

sequence of A-modules
(2) 0+ X+>Y>2Z>0,
Then the induced sequence
* * *
(3) 0« X+ Y« Z+«0

is exact as well. lMoreover, if M and N are arbitrary A-modules, the

following holds:
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. Xk

i) (M) = M.

. * *

ii) (M@ N) = M@ N,

P . . * *

iii) M =N if and only if M = N.

%

iv) M 1is projective if and only if M 1is injective.

v) There is a one-to-one reversing correspondence between
%
submodules of M and factor modules of M as described by (2) and (3),

and vice versa.

Before we get carried away with general observations, let us

introduce

Definition 7.3. Same notation as above. Then A 1s called a

frobenius algebra if there exists a linear map % : A > F with the property

stated in Lemma 6.101),

i} Ker A does not contain any left or right ideals of A.
If furthermore A has the property stated in Lemma 6.101i),
ii) For all a,b e A, x(ab) = i(ba),
Then A 1is called symmetric.

Thus Lemma 6.10 may be reformulated as

Lemma 7.4. A group algebra over a finite group is a symmetric

algebra.

With this definition, the following does not come as a big

surprise.

Proposition 7.5. Let A be a frobenius algebra. Then
*
i) A= (AA) as A-modules.

ii) An indecomposable A-module is projective if and only if

its dual is projective.
If furthermore A 1is symmetric, we have

iii) Let P be a p.i.m. of A. Then the unique simple factor

module of P 1is isomorphic to the unique simple submodule.
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Proof: Once 1) 1is established, 1ii) and iii) follow exactly
as in the case of a group algebra. Thus we only have to prove i), which
provides us with a different proof of Theorem 6.6. Or does it?

To prove i), we define for every x A an F-linear map
A+ A>F by Ax(y) = A(xy), where ) 1is defined as in Definition 7.3.

X A % %
Then Ax e (AA) and we define ¢ : A, > (AA) by o¢(x) = Ax. This is

A
obviously an F-linear map, and Definition 7.3 1) ensures that ¢ is

injective and hence bijective. Moreover, if a € A,
(4) Axa(y) = A(xay) = Ax(ay) = [kxa](y)
which shows that ¢ 1is A-linear.

Finally, the main result of this section:

Theorem 7.6. Let A be a symmetric algebra and let e e A be

. A , .
an idempotent. Then (eA,eA) ~ eAe) 1is symmetric.

Proof: Choose A as in Definition 7.3, and consider the
restriction of XA to eAe. Clearly, 1ii) is still satisfied. To
cstablish 1), let x € eAe and assume A{xeAe) = 0. ASs X € ele
however, x = exe and thus

5) 0 = i(xehe) = A(exeA) = A(xA)

by ii). Hence x =0, and 1i) holds for the restriction of X to eAe.

8. Loewy series and socle series.

Again the following basic definitions go back to Artin,
Nesbitt and Thrall (1944). Note though, that here the Loewy and socle

series are called the upper and lower Loewy series.

Definition 8.1. Let A be an artinian ring and denote its
radical by J. Let M be an arbitrary (but always finitely generated)
A-module, and choose m minimal such that MI™ = 0. Recall that M/MJ

is the maximal semisimple factor module of M. By the Loewy series, we
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mean
M/MJ
13 /M3
(1)
My 2 gt
MJm_l
e writmrtth s g, 8 ... 8 X, , where X. . is
i+1,1 1+l,ri 1+1,]
simple for all j, we usually write
X ceeessen X
11 lr1
le ..... sesae er
(2) '
Xml .o er
a

Likewise, we define the socle series in the following way. Let

Sl(M) denote the maximal semisimple submodule of M and define Si(M)

successively by

M) = ‘
(3) Si(M)/Si_l(h) SI(M/Si—l(M))'
By the socle series we mean

S (M)/s (%)
n n-1

(4)
4 U
Sz(h)/SlEL)
Sl(M)
where n 1is chosen minimal with Sn(M) = K. We usually write (4) in a

way similar to (2).

Sl(M) is also called the socle of M and often denoted by
Soc(M). Similarly, we define the head of M as Hd(M) := I/MJ. Finally,
we recall that MJ =: J(M) 1is called the radical of M.
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Lemma 8.2. Let A and M be as above. Then

i) n =m. This common number is called the Loewy length of
M and is denoted by j(M).

ii) W'gs (M) for all r if we set S (1) = 0.
Proof: Easy exercise.

Lemma 8.3. Let A be an artinian ring of Loewy length n.

Then Si(A) is the annihilator in A of Jl(A). In other words,
(5) 5,(a) = fae alal (&) = 0}
In particular, Si(A) is a 2-sided ideal of A.

Proof: By definition of Si(A), Si(A)J(A) = Si_l(A) in view
of Corollary 3.7, from which (3) follows. In particular, Si(A) is a
2-sided ideal as J(A) 1is,

Lemma 8.4. Let F be a field and A a finite dimensional

algebra over F. Let ¥ be an A-module. Then

1) The socle series of M 1is the dual of the Loewy series
% *
of the F-dual of MK, M (or ¥ if A is a group algebra).

*
ii) ¥ and M have the same Loewy length.

Proof: 1) follows from the fact that taking duals reverses

* %
exact sequences, and 1i) follows from 1) as ( M) = M as A-modules.

Lemma 8.5. Same notation as in Lemma 8.2.

i) Let N € M. Then the socle series of N 1is obtained by

intersecting N with the socle series of M.

ii) (Stripping a factor of the socle series) M contains a
simple module S in its i1'th socle if and only if M has a submodule of

Loewy length 1 with simple head S.

Proof: 1) By definition of socle series, SiUﬂ nsc Si<N)'

On the other hand, Sl<N) is semisimple, hence contained in Sl(M).
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Assume therefore by induction that Si_l(N) < Si_l(M). Then
(6) (s, (M) + 5, ,(M))/s, 00

is semisimple, i.e., Si(N) + Si_l(M) S:si(M), and we are done.

ii) follows from i) and the universal property of PS, the

p.i.m. with head S.

Lemma 8.6. Assume A 1is a symmetric algebra. Then the

following dual statements of those of Lemma 8.4 hold:

i) Let N M. Then the Loewy series of M/N 1is the

homomorphic image of that of ™ by the canonical map M > M/N.

ii) (Stripping a factor of the Loewy series) M contains a
simple module S in its i'th Loewy layer if and only if M has a factor

module of Loewy length 1 with simple socle S.

Remark. Let X be an A-module, and assume the Loewy resp.

socle series of X has the form
E
(7 E
E
E

where Ei is simple for all i. As XJ = S3(X) and XJ3 = Sl(X), we

deduce that XJ/SI(X) has Loewy resp. socle series.

(8) EoF3 B2
EQ s E3E4
Ey
which shows that XJ/Sl(X) ® 5 <] E3 , where we identify the first

4
component by its Loewy (and socle) series.
If A 1is a finite dimensional algebra over F and we denote
a matrix-representation corresponding to an A-module Y by MM, this shows

that X may be chosen to be of the form
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(9 * 0

}
*

* O =

E <]

= o

Definition 8.7. Same notation as above. Then M 1is called

uniserial, if MJl_l/MJl is simple for all j < j(M).

. a
Example. Let P = <x> be a cyclic p-group of order p , and
let M be any indecomposable F[P]-module. Using the Jordan Canonical
form of x, we see that

i) dimFM < pa

.. . a .
ii) For each integer me {1,2,...,p }, there exists, up to

isomorphism, exactly one indecomposable F[P]-module of dimension m.

i11) M 1is uniserial.

Let A be a finite dimensional algebra over the field F. We
have discussed the one-to-one correspondence between the isomorphism classes
of the simple A-modules with representatives El,...,ﬁr and the
isomorphism classes of the p.i.m.'s of A with representatives Pl""’Pr’
characterized by the fact that Pi/PiJ(A> = Ei. Also, the multiplicity of
Pi as a direct summand of A equals that of E.l as a direct summand of
A/J(A), which in the case of F being a splitting field of A/J(A)
aquals dimFEi.

The Cartan invariants cij of A have been defined as the
multiplicity of Ej as a composition factor of Pi’ and we have shown

that if F 1is a splitting field of A/J{A), then

. A
(1) Cij = dlmF((Pj’Pi> ).
If furthermore A 1is symmetric, we have proved that ¢ 2 2
unless Pi = Ei. As moreover Pi is injective, we have the following

characterization of this case.
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Proposition 9.1. Let A be a symmetric algebra and usc the
notation above. Let B be a block of A 1in which Ei lies, i.e., B

is the unique block for which EHB = Ei. Then the following are equivalent:

i) c¢.. =1,
11

11 . i ojecti i.e. . = P.).
ii) El 15(5?)Jec ive (i.e., El l)
. i
ii1) BB = Ei for some g

We now finally want to assume that A 1s in fact a group

algebra and remind the reader of the following as our starting point.

Proposition 9.2. let & be a finite group, F a field of
characteristic p and Q a normal p-group of G. Then F[Q] acts
trivially on any simple F[G]-module. 1a particular, the trivial module is

the only simple module of FIG], if G 1is a p-group.
This property in fact characterizes p-groups. Namely,

Proposition 9.3. Let G be a finite group and F a field of

characteristic p. Then the following are equivalent
i) G 1is a p~group.

ii) FlG] is indecomposable.

FLG]
iii) dimF(F[G]/J(F[G])) =1.

Proof: The equivalence of ii) and iii) is a consequence of
the one-to-one correspondence between simple modules and p.i.m.'s. Also,
i) implies iii) by Proposition 9.2. Conversely, assume the trivial
module I is the only simple F[G]-module. Then the composition factors of
any module arc isomorphic to I. Let x g G be an element of order prime
to p. As F[G] 1is a free Fl<x>]}-module, it is isomorphic to a direct sum

of modules isomorphic to Fl<x>] as an F[<x>]-module. But as

Fl<x>]
Fl<x>] 1is semisimple, x acts on F[<x>] as the identity then, forcing

x = 1. Thus G 1is a p-group.

Note that implicit we use the following obvious but extremely

important fact.
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Proposition 9.4. Same notation as above. Let P be a
projective F[G]-module, and let H < G. Then P 1is a projective

F[H]-module.
Proof: F[G] 1is a free F[H]-module.

Corollary 9.5. Let G be an arbitrary group, let
Qe Sylp(G) and let F be a field of characteristic p. Let P be any
projective F[G]~-module. Then |Q' divides dimF(P).

Proof: By Proposition 9.4 and 9.5.

Corollary 9.6. Same notation as in Corollary 9.5. Assume

furthermore that Q 1is normal in G. Then
i)y J(FIG]) = FlGlI(FIQD).

ii) Let M be an F[G]l-module. Then the Loewy resp. socle
series of the restriction of M to F[S] 1is the restriction of the Loewy

resp. socle series of M.

Proof: By duality, it suffices to prove ii) for the Loewy
series. But this is a direct consequence of 1) using the basic
properties of the radical.

To prove i) denote the radical of A = F[G] by J. As
Q .G, Q 1is in the kernel of any simple A-module by Proposition 9.2.
Hence A/J 1is a semisimple F[Q]-module (indeed a trivial F[Ql-module)
and thus AJ(F[Q]) € J. A fast way of proving the other inclusion is the
following: By a theorem of Schur, Q has a complement K, and by

Proposition 9.3,
(2) A/ANFIQ]) = F[K]

which is a semisimple algebra and hence a semisimple A-module. Thus

J < AJ(FIQ]l) by the properties of the radical.

With these results, we have exhausted the more obvious general

remarks.
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We proceed to investigate the Cartan matrix of a symmetric
algebra A over a field F. Denote the radical of A by J, and assume

F 1is a splitting field of A/J. As before P ...,Pr will be a complete

17
set of representatives of the p.i.m.'s of A, and E.l = Pi/PiJ.

Lemma 9.7. Choose s e N arbitrary, and let {31,...,8m }
— — _ s
be a basis of a complement to (p./p.J° l,P.)A in (P./P.JS,P.). Set
i j i j
w m
a1 s s
(3) S./P.J =N Ker &, S.= I Im3_.
i r j r
r=1 r=1
Then
“) = dim ((E,,P./5.)™) = dim_((5.,E.)™)
Mg = GHIpiREgabi/og/ /0= CLIRRED R/ T

Proof: The first equality follows from the fact that by

assumption
. -1 A
(5) m = dlrr.F((Ej,PiJs /e 3™

as A 1s symmetric. Moreover, for any 3 = :err’ E(Pi) is of Loewy
length s by Lemma 8.51i). In particular, if = 1is the canonical
homomorphism Sj > Sj/SjJ, then msl,...,nsm are linearly independent,

(m_) °
i.e., S./5.3 = (E.) s , which 1s equivalent to the second equality.
1] 1 y

As a corollary, we obtain

Theorem 9.8. Let A be a symmetric algebra over the field F,
and assume F 1is a splitting field of A/J(A). Then the Cartan matrix of

A 1s symmetric.

Proof: By considering the Loewy series of Pi we see that
Cij = st with the notation of Lemma 9.7. By considering the socle
s

series of P. we see that c¢.. = Im as well.
] ji s S

Remark. It is necessary to assume that F 1is a splitting
field of A/J(A). We will give a counter example to the general case of

Theorem 9.8 in Section 18.
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For the sake of simplicity, we now assume that A 1is in fact
a group algebra. The advantage of this is that the dual of a right module
again is a right.

Thus A = F[G], where G 1is a finite group and F 1is assumed
to be a splitting field of A/J, where J = J(F[G]). Denote the dual

% x » as F[G] 1is symmetric. Now let

i i
L # 0 be any power of J and set A= AR, Fi = Pi/Piﬂ . Then A is

%
module of Ei by E ,. Then Pi = P

a finite dimensional algebra but certainly not symmetric or even quasi-
frobenius in general. However, as Eifi = 0 for all 1, {El,...,Er} is

still a complete set of representatives of the isomorphism classes of

simple A-modules, and ?i is the p.i.m. of A corresponding to Ei.

Denote the Cartan matrix of 4 by {Eij}' Now the following holds.

Theorem 9.9 (Landrock (1983)). The Cartan matrix of A 1is

dual symmetric, 1l.e., cij =C 4o xe
i

This will follow from the following result, which is

interesting in itself.

Lemma 9.10. Let s e N be arbitrary. Then the multiplicity

L -1 .
of E. as a composition factor of PiJS /PiJS equals that of E , 1n

1

Proof: Using duality, it suffices to prove that the first

number, a is less than or equal to the second, a,. By Lemma 9.7,

1’ 2

o SVAL _ . A
(6) a; = dlmF((Ej,Pi/PiJ Y7y = dlmF(<S’Ei) )

m

s
where S 1s a submodule of Pj of the form S = [ V and each V
r

r=1

is a homomorphic image of Pi in P.. Moreover, and this is the vital
J

part, any submodule of S not contained in SJ 1is of Loewy length s.

*
Or, in other words, SJ = § _l(S). But this implies that S is a

s
(al)
quotient module of P , with § = (E ) . Hence Lemma 8.5
] i

20 and we are done.

”Js-l

asserts that al < a
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Proof of Theorem 9.9: Denote the Cartan matrix of A/JS by

{cij(s)}. It suffices to prove that
(7N Cij(S) - Cij(S—l) = Cj*i*(s) - Cj*i*(s—l)
for all s, which is exactly the statement of Lemma 9.10.

Remark. Of course a similar result holds for the socle

series of Pi and Pj' For another result, see Lemma IIL.l.5.

Lemma 9.10 has a number of applications to the Loewy structure

of the p.i.m.'s of a group algebra, of which we only mention:

Corollary 9.11. Let Ql""’Qt denote the p.i.m.'s of some
block of F[G], and assume the Loewy series of Q2,...,Qt are known.
*
Then the Loewy series of Ql is known as well except for the composition

*
factors isomorphic to (Ql/JQL) .

Definition 10.1. Let A be an artinian ring and let M be
an arbitrary A-module. Choose Py projective with Hd(Py) = Hd(M). Then

PM is called the projective cover of M.

Assume furthermore that A 1is a quasi-frobenius algebra.
Choose 1, projective (= injective) so that Soc(lM) =~ Soc(M). Then I
is called the injective hull of M.

From the definition, we immediately obtain

Lemma 10.2. With the notation above,
. . - . . CX’
1) There exists a surjective homomorphism PM - M.
- . C . g
i1) There exists an injective homomorphism M > IN'

Proof: 1) follows from Nakayama's lemma, and ii) from i) by

duality.



Lemma 10.3 (Schanuel's lemma). Same notation as above.

P., P, be projective A-modules such that

1’ "2
&
O] 0w P V>0
2 0 W P 1? vV~>0
> >
(2) Y 2
are both exact. Then
(3) W. 8P, =W 8P

Proof (W. Feit): Let U be the submodule of P1 *] Pz
by
(4) U := 1(x1,x2) :l(xl) = ;2<x2)}
and let £ be the projection of P1 ¢ Pz onto P1 with kernel P
e, (U) =
Then vl(L, Pl and
T - = | - ~ W
(5) U N Ker = {(O,xz) X, € Ker ‘2} “2'
Now projectivity of P1 asserts that U = Wz <] Pl' By the same
argument, U = Kl ® PZ'

Notation. Let A be an artinian ring, M an A-module.

then define the module Il by

v @

(6) 0> "M~>P

y ot E 0

If furthermore A 1s quasi-frobenius, we define the module UM by

2
5

(7) 0> ¥>1,>M>0.

)
I

These operators are called the Heller operators.

Corollary 10.5. Let A be an artinian ring, and let M

P be A-modules with P projective., Then

Let

defined

We

and



36

i) &M 1is uniquely determined up to isomorphism, indepen-

dently of the choice of .
ii) Assume < : P > M is surjective. Then P = P, & P',
where ker ¢ = M @ P'.

ii1) Let N be a submodule of P and assume ¥ 1is a direct

summand of P/N. Then ¥ 1is a direct summand of N.

Remark, Of course, similar statements hold abecut M 1if A

is quasi-frobenius.

Proof: 1) follows directly from Schanuel's lemma.

ii) Here we get at least that M ® P = ker - @ P We now

L.
cheat and use Krull-Schmidt. Our justification is that 1) We iill only
apply it in the case where A 1s a finite dimensional algebra,

2) Krull-Schmidt actually does hold for artinian rings as pointed out
earlier. An immediate consequence is that PM is isomorphic to a direct
summand of P and we are done.

iii) TFollows from ii).
Exercise: Find a valid proof of 11) and 1ii) above.

Before we turn to the main idea of this section, we list some

basic properties of the Heller operators.

Lemma 10.6. Let A be a quasi-frobenius algebra, and let

be a projective-free a-module. Then
i) §{. 1s additive on modules.
i1y Ur) = J(EM) = M.
. * * o
iii) (M) = (M) and (M) = (M.
. %%
iv) (Heller's lemma) M = 1(2( M) ).

v) M 1is indecomposable if and only if {} 1is indecom-

posable.

Proof: 1), ii), and iii1) are direct consequences of the
definition of QM and ©M, and the fact that exact sequences are

preserved under taking duals.
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We are now ready to define the Ext-group.

Definition 10.7. Let X and Y be A-modules, where A 1is

an artinian ring. Consider the exact sequence

. P — > pP- —» 7
QZX X X
~ - &
:3X iZX OX

where 0O°X := i(:“_lx). This induces a sequence
A
(Pﬁ (P Y) - (X,Y) 0
9) ‘\\\\\\\\ ;////////
(X, Y)

We now define

(10) Ext:(X,Y) (EnX,Y)A/i;((P )

My

-1
Ext: (OX,Y)

Exti(in_lx,Y)

n

Example 1: Let J denote the radical of A and assume E1

and E are simple A-modules. Let ., € (P_ ,E )A. Then P_ J ¢ Ker U
2 E1 2 E1 -

as E2 is simple. Consequently, if we set E1 = X and E2 =Y above,

we obtain that . °zy = 0. Thus

1 A
(11 ExtA(El,Ez) = (PElJ,Ez)
whenever E. and E, are simple. This example indicates a connection

1 2

between possible extensions of E1 by E2 and the size of Exti(El,Ez).

If the reader is unfamiliar with this, he or she is referred to the

appendix on Ext.
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. . 1 .
Next we explain how properties of ExtA-groups of simple

modules relate to basic properties of A.

Proposition 10.8. Let A be a symmetric algebra and let E

1

and Ez be simple A-modules. Then El and Ez lie in the same block of

A 1f and only if there exists a sequence of simple modules

(12) El = Tl,Tz,...,Tn = Ez

1 ,
such that ExtA(Ti,Ti+1) # 0 for all 1.

Proof: We first observe, in view of the example above that if
M 1s any A-module and S2 is any simple composition factor of MJr/MJr+l
for some r, where J = J(A), then there exists a simple composition
factor S1 of MJr_l such that Exti(sl,sz) # 0, as Hd(MJr_l/MJr+l) =

wt gt

Now, if the assumption above holds, then Pi and P are

i+l
in the same block by Definition 4.3, where P, denotes the projective

cover of Ti, and consequently El and Ez belong to the same block.

Conversely, if El and E2 belong to the same block, choose

by definition p.i.m.'s
(13) P. =P_,P

such that Pi and Pi+1 have a simple composition factor Si in common.

Denote Hd(Pi) = Soc(Pi) by Ui. By the remark above, we may find

sequences

(14) S; = xl, Xy = Ui, Ul =Y sees¥ =8
i i

for all i such that Exti(xj,xj+l) # 0 for all j and

EXti(Yk’Yk+l) # 0 for all k, from which (13) then follows.

Corollary 10.9. Assume the socle series of any p.i.m. of a
block B of a symmetric algebra equals the Loewy series. Then all

p.i.m.'s of B have the same Loewy length.
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Proof: Let Q1 and Q2 be arbitrary p.i.m.'s of B. It
suffices to prove that j<Q1) < j(Qz). Let Si = Hd(Qi) and choose a
sequence of simple modules as in (12). Again we denote the projective

cover of Ti by Pi. Thus it suffices to prove that j(Pi) i_j(Pi+ ) for

1
all 1i. However, by (11), Ti+l is a simple composition factor of
PiJ/PiJz, where J 1s the radical of B, and hence by assumption of
Sm_l(Pi)/Sm_z(Pi), where m 1is the Loewy length of Pi' Thus Pi has a

submodule of Loewy length m - 1 with simple head T, which shows

s
that the Loewy length of Pi+1 is at least m. '
For this and related results, the reader is referred to
Landrock (1980). Also we mention without proof that our assumption on the
p.i.m.'s in Corollary 10.9 is satisfied for the group algebra of an
arbitrary p-group. This was proved in Jennings (1941). However, in this
case Corollary 10.9 is vacuous, as the group algebra is indecomposable as
a module. Also it follows then from Corollary 9.6 that the p.i.m.'s of
any group with a normal Sylow p-subgroup have identical Loewy and socle
series. Also, the p.i.m.'s of SL(Z,pn) in characteristic p enjoy this
remarkable property, as proved in Andersen, Jgrgensen and Landrock (1983),

which definitely not is shared by most other groups of Lie type.

Finally, we prove two important results on relations between
G/G'" and Ext;[c](l,l), where G 1s an arbitrary finite group and I
is the trivial F[G]-module.

Consider the exact sequence

+ o

1s) 0+"2->2Z[Gl»Z >0

where the augmentation ideal [Z 1is defined by

(16) lZ = spanz{g-l .g e G}

and

n

is the canonical map. With this notation, we have

Lemma 1U.10. The abelian group QZ/(EZ)Z is isomorphic to
G/G'.
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Proof: (See Hilton and Stambach (1971).) As QZ 1is free
over {g-1]|g € G},

(17) oy ¢ g-1 > gG'

extends to a group homomorphism Gy CZ > G/G'. (Observe that
-1,

ul(l-g) =g G'.) As

(18) (x-1)(y-1) = (xy-1) - (x-1) - (y-1)

N2 . . N NNy
we see that (QZ)” € Xer ;. Conversely, if we define ST G > DZ/(Z)
by
(19) Gy 8> g - 1 +0Z

then (18) shows that o, is a group homomorphism, and as 22/(22)2 is

2" On the other hand, as obviously 9y and 4, are

the inverses of each other modulo their kernels, the statement holds.,

abelian, G' < Ker w

Corollary 10.11. Let P be a p-group, and let $(P) denote
its Frattini subgroup. Let F be a field of characteristic p. Then

(20) dimF(Ext ](1,1)) = rank(P/Z(P))

1
F[P
where I is the trivial F[P]-module.

Proof: Denote by GF(p) the field with p elements. Then

Q1) 0z F =1 = J(FlP])

BGF(p)
and the statement fellows since for an abelian p-group A we have that
A 8y GF(p) =~ A/2(A).

Corollary 10.12. Same notation as above. Let x ,X be a

10X,
minimal set of generators of P, Then

(22) J = J(F[P]) = (1—x1,...,l—xr)
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and

(23) 1-x

2 2 |
+J, l—x2+J ,...,l—xr+J ;

form a basis of J/JZ.

Corollary 10.13. Let G be any group, I a field of

characteristic p, and let I denote the trivial F[GJ]-module. Then

(24) Ext I,1) = Hom(G,Zp)s

1
F[G]( GF(p)F

where Z is the cyclic group of order p. 1In particular,

Ext;[G](I,I) # 0 1if and only if G has a normal subgroup of index p.

Proof: Denote the trivial GF(p)[G]-module by Ip. As

1

(25) Ext XtGF(p)(I

](I,I) = E

1
F
FLG p’Ip)gGF(p) ’

we may as well assume that F = GF(p). By '11),

GF(p)[G].

(26) E ]LI,I) = (0Z s GF(p),Ip)

1
*ter(pilc yA
2 JZ s GF(p) —~ Ip be a G¥(p)[G]l-homomorphism. Then
(27) SUx=Dy) = tix-L)y = ;{(x~-1)

for all x,v € G. Thus :((x-1)(y-1)) = 0 and hence

! ) ] JGF(p)I[G]
(28 Ext . (1,1 -z .. GF{(p),I)
(28) XeripLG] > p) z/CzZ) 8y (p) o’
> Hom(G,Z )
P
- 2 ,
as [Z/(GZ)" = G/G'.
Example 2. Set pr = Z EGF(p)F' Then it 1is not too

difficult to prove that

(29) Flcl/ 1"
P
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is the maximal factor module of F[G] of Loewy length at most n with all

composition factors isomorphic to I.

Example 3. Let F be a field of characteristic 2. The reader

is urged to check that the following Loewy series of F[D] are correct:

F[D]

(30) D : z,0z, Dg» Qq» 2,02, Z,62,6Z,
I I I
II I 111
I I II1
II I
I

This may be obtained using Corollary 10.12, which provides the
dimension of F[DI/J(F[D]).

For P a p.i.m. of some group algebra, let H(P), the
heart of P, denote the unique maximal submodule modulo the unique minimal
submodule. In the examples above, we saw that D8’ Q8 and Z, @ Z have

2 4

identical Loewy series. However, it may be proved that the heart of D8

is isomorphic to the direct sum of two uniserial modules of Loewy length
3, while the hearts of Q8 and 22 ® Z, are indecomposable. It has been
54

proved in general that if P = F[G] for G a p-group, F a field of

FLG]
characteristic p, then H(P) 1s indecomposable unless G 1is a dihedral
2-group, by P. Webb (1982). 3ut we have to dig deeper in order to

distinguish between Q. and Z2 ® 24,
Q

11, Orders.

For completeness, we briefly discuss the theory of g-adic

rings:

Let RO be an integral domain and P a prime ideal in RO
such that e Y2 0. This gives rise to the sequence

i=1

n o n-1 2 2
(1) e RO/F > RO/P > . RO/P > Ro/p +> 0
where, for n > 2 and a € R : is defined b o (a+ n) = a+ n-l
’ - 0’ ™n vy P [ :
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. . . . . n .
Now we take the inverse or projective limit lim RO/P . We may think of
“+
this as the set

|

n
(2) {(...,an,a ,...,az,al) la_e R/p, ¢n(an) = an—l}

n-1
with coordinate addition and multiplication. The ring is called the
P -adic completion of R_  and will be denoted by R. We note that if ¢

0

is another ideal of RO such that g < P while Pr = (% for some r,
. i . i
then lim RO/ - lim RO/ ¢

There is a natural embedding of RO into R, namely
n 2
(3) X2 (ooayxt poyeoyxt pUoxe p)

and we identify x with its image in R.
Assume now furthermore that R = (7) 1is a principal ideal.

n n
Then R /p“ = R/R~ and thus R = lim R/R™
0 <

Finally, we assume @ 1is a maximal ideal in RO. Let
n n . .
X €& RO/P' such that x ¢ R/§ for some n. As RO/F. is a field,

there exists vy € RO/ Fn and z & eJ Pn such that xy = l-z. Hence
(4) xy(l + z + 22 Foaes + zn_l) €1 + PI1

and thus x 1s invertible in RO/ Fn. Consequently, an element of R 1is
invertible if and only if it does not belong to Rt. THus R 1is a
principal ideal domain and local, and the ideals in R are precisely

n
those of the form R~ and (0).

We call a ring R a p-adic ring if R 1is a P.I.D. of
characteristic 0, has a unique maximal ideal (7) with R/{(m) of
characteristic p and R = lim R/(ﬂn).

Fields of characteristic p of course are p-adic rings, and
we have just discussed how to construct such rings starting from integral
domains, for instance the localization of the ring of algebraic integers in

an algebraic number field at a prime ideal.

Definition 11.1. Let R be a commutative ring. By an
R-order A, we understand an algebra over R, which is free and finitely

generated as an R-module.
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Let A be an R-order. As AR = R7 for some n, it follows
that if R 1s a p-adic ring, then A = 1im A/A(”n), where (7) 1s the
maximal ideal of R. This holds for A not only as an R-module, but as
a ring as well. Also, we note that A/A(-) 1is an algebra over the field

R/().

Example 1. Let & be a p-adic ring and G a finite group.
Then the group ring R[C] 1is an R-crder. The center Z(R[G]) 1is an
R-order as well, with basis {[K]>, where K ruas through the conjugacy

classes of G.

Example 2. Let A Dbe an R-order, and M an (R-free and

finitely generated, always) A-module. Then End, K (}¥) 1is an R-order.
Fat

In the following, we let R be a p-adic ring and A and

r-order. Let (~) be the maximal ideal of R and set [ = R/("). Thus

A = A/A(7) 1is & finite dimensional algebra over F, and dimFK = rankQA.

We now define the radical of A, J(A), by
(5) A/J0A) = A7),
Now, as J(&)  is nilpotent, there exists a natural integer n with
Jon” C Ai7).  Conversely, A(-) ¢ J(A) by definition, and consequently,
das remarked earlier,

. i
(€) A = lim A/J(A) .

We may now take advantage of this to ohtain

Theorem 1l.2. Same notation as above. Then

i) Let € € & be an idempotent. Then therc cxists an

idempotent = & A such that e = ¢ + A(-).

t
ii1) Let 1 = _ e, be a primitive idempotent decomposition
i=1 = t
in A, Then there exists a primitive idempotent decomposition 1 = I e,

5

in A such that e, = e~ A{-) for all 1i. Furthermore, if
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s
1 = I e! 1s another primitive idempotent decomposition in A, then

. . -1 .
s = t and there exists a unit u € A such that ei = u eiu for all 1.

Proof: 1) follows from ii). Now, by Theorem 1.5, an

idempotent decomposition of T in & may successively (and succesfully)
be lifted to one in a/A(7"). Choosing elements of A with all these as
their respective projections, for all n, this gives an idempotent
decomposition in A of 1. Moreover, if e € A 1s an idempotent, eAe
is an R-order, and the argument we just gave shows that e 1is primitive if
and only if e + edAe(~) 1is primitive in eAe/ede(=), thereby proving the
first part of 1), Next we use the fact that 4 is artinian to deduce
that as 1 = [ e! reduced modulo A(7) 1is a primitive idempotent

i=1 ~
decomposition in A, we necessarily have that s = t by Theorem 1.5,
which moreover yields the existence of a unit Gb € A such that
Gglziﬁb = Ei for all 1 with suitable notation. We now lift Gb to a
unit of A just as we did with idempotents above. 1In particular, we may
for the rest of the proof assume that gi = gi for all 1i. But again by
Theorem 1.5, there exists u € A such that u o+ A(Tn) is a unit in
A/A("n), say with inverse v+ A("n), and voeu + A(ﬂn) = ei + A(rn)

for all i, and also u +A('n_l) = u +A(‘”—l
ol n-1

Consequently, u = (uj) € A = lim A/A(-") will do as the claimed unit

) for all n.
in ii).

Just as in the case of finite dimensional algebras, this
enables us to prove Krull-Schmidt for A-modules, A as above, where

N

again an A-module ¢ 1is free and finitely generated as R-module.

Corollary 11.3 (Krull-Schmidt). Same notation as above. The
indecomposable direct summands of ¥ are uniquely determined up to

isomorphism. In other words, if
(7) M= 9 M = @ M
iel ' jeJg
with Mi and MH indecomposable A-modules, then there exists a bijecticn

¢ . I~>J such that M! =M . for all 1.
i (1)
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Proof: By Theorem 5.2, Theorem 11.2 applied to EndA(M) and

then by appealing to Theorem 1.4,

Corollary 11.4. M is indecomposable if and only if
EndA(M)/J(EndA(M)) is a division algebra over F.

Proof: By Theorem 11.2 and Lemma 5.3.

t
Now, let 1= _ e. be a primitive idempotent decomposition

_ _ i=1 ¢

of 1 1n A, and let 1 = Z ey be a 1ift of this to A. Set
i=n
P. =e.A and P, = e.A. Then P. ~ P./P.-,
i i i i i i1
t

(8) A, = @ P,

1

i=1

and Pi is a p.i.m. of A. Moreover, just as in Theorem 3.1l4, we have

Corollary 11.5. The following are equivalent

i) There exists a unit u € A with E_lei: =
ii) P~ P,
1 ]

1ii) There exists a unit u € A with u cu=e

iv) P. = P..

Corollary 11.6. Let Fl,...,FC be a complete set of

representatives of the p.i.m.'s of a&. Then Pl,...,PA is a complete set
<

of representatives of the p.i.m.'s of A.
Finally, Lemma 5.4 yields

Lemma 11.7. Let e & A be an idempotent and M and A-module.

Then
(9 (eA,M)A =M,

Proof: Reduce modulo ~ (or use the same proof as in

Lemma 11.7).
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Modular systems and blocks.
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What we have achieved in the previous section is a machinery,

which allows us to go from characteristic O

back again for

certain modules. Let us formalize this:

to characteristic p,

and

Definition 12.1. Let R be a p-adic ring with maximal ideal
(v). Let F = R/(7), and let S denote the quotient field of R. Then
(F,R,S) 1is called a p-modular system,

is a discrete

Example 1. Let K be an algebraic number field of
characteristic 0, let RO denote the ring of algebraic integers of K
and let p be a prime. Let FO be a maximal ideal of RO such that
F()n Z = (p). Then the localization R of R_. at ®o

valuation ring.

the completion

in view of our

of p-adic ring

Let
order over R of finite rank.

oA~ X be the canonical homomorphism.

(1

which induces

(2)

Now let El,
by € Then
Z(A).

equals Z(A),

However, our assumption does not allow us to deduce that

% 0

denote the maximal ideal of R

Let ¢ Fb.

We now form

R = lim R P /_Fn and denote its maximal ideal by (m),
- 0

analysis in the previous section.

we are typically dealing with.

(F,R,S) be a p-modular system, and let A be an

Set A=A S and A = A/AT. Let

Thus we have

+er

O+«A<AacCh

r

Z(&)

+

z(a) ¢ 2(A).

.y Br be the blocks of A and denote the unity of
r
1 = = =

i=1

although this is the case if A

Nevertheless, we have

This will be the type

B,
1

oy is a primitive idempotent decomposition in

$(Z(A))

is a group algebra.
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Proposition 12.2. Let € & A be a central primitive

idempotent, and let ¢ be a lift of to A. Then £ 1s central in A.

In particular, ¢ 1is uniquely determined.
Proof: (Dade (1973), Prop. 1.12). Ve have that
(3) A = cAe @ ea(e-1) @ (e-1)Aec @ (e-1)a(e-1).

Moreover, as ¢ 1s central in K, ¢A(e-1) and (eg-1)Ae are both

contained in AT. Thus we have for all a & A that <cal(:s-1) € A~ and
n

hence that «ca(e-1) & Av for all n as ¢ 1s an idempotent, which

forces <¢ca{e-1) = 0., Similarly, (e-l)ac = 0. Hence ac = cac = €a,

and thus ¢ 1is central. It now follows from Theorem 11.21i) that ¢ 1is

uniquely determined.

This allows us to extend the concept of a block: Let

1,...JBr be the blocks of A and denote the unity of Bi by gi' Thus
r -_— —

1= F € is a primitive idempotent decomposition in Z{A).
i=1

Correspondingly, we have by Proposition 12.2 a primitive idempotent

r
decomposition 1 = I &, 1in Z(A), where €. + A~ = ¢.. If we set
i=1 1 1 1
B. = €.4, then
i i
T ~
(4 A= 8 B,
i=1 *

and B, =B,/B.7. Also, ¢.€ Z(A) and
1 1 1 1

~ T ~
(5 A= 8 <.A.
i=1 !
Ky
However, £ is not necessarily primitive in 2Z(A). If g = L eij
- j=1
is a primitive idempotent decomposition in 2(aA), then
k.
- i -
(6) A= 8 e,
j=1 M

and eijA is a simple Wedderburn component of A for all j if A is

semisimple.
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Another useful and quite surprising result is the following.

Proposition 12.3. ({(Dade (1973), Proposition 1.9) Let A be

an R-order of finite rank, and let A' be a subalgebra (with or without

the same unity). Then J(a) N A' € J(A").
The proof is based on the following.
Lemma 12.4. If x 1is a unit in A, then x_l lies in R[x].

Proof: Let R[x] be of rank n over R. Then
R[x] = SpanR{l,x,xz,...,xn_l}. Let T be the R-linear transformation of
A defined by y > xy. As A 1s an R-order, we can define the
characteristic polynomial
(7) f(X) = det(X1-T) = s alxn—l *oees toa
where a; € R for all 1i. As x 1is invertible where a; R for all 1i.

As x 1is invertible in A, det(T) = (-1)nan is a unit in R. Thus
(8) X + a.x + ...+ oa

implies that

(9) x(—an)-l(xn—1 + a xn—2 + ...+ a )y =1

which proves the statement.

Proof of Proposition 12.3: Let e be the unity of A'. Then
e 1is an idempotent of A, and thus eAe 1is a suborder of A containing
A'., By definition of J(A) and Lemma 5.6, J(eAe) = eJ(A)e = J(A) ) eAe.
Thus we may as well assume that A = eAe, 1i.e., that e = 1. Now,
J(A) N A" 1is a 2-sided ideal in A' and for all y & J(A)N A', 1 -y
is a unit in A. Hence 1 -y 1is a unit in A' by Lemma 12.4 for all
y € J(&) N A', and it follows that J(aA) N A' € J(A'). Indeed, if not,
there exists a maximal ideal M 1in A' not containing J(A) N A'. Thus
M+ J(A)N A' = A", In particular, 1 = m+a with me M, ae J(A)N A",

But then m = l-a 1is a unit in A’ a contradiction.
’
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Example 2. Let G be a finite group, and set A = R[G]. Let
X be an irreducible character of S[G]. Then X(Ei) # 0 if and only if

the Wedderburn component corresponding to x occurs in (6).

Definition 12.5. Let (F,R,S) be a p-modular system, and let
A be a finite dimensional algebra over R. Set ; = A 8RS and & = A/AT.
A p-block of A (or sometimes just a block) is identified by a central
primitive idempotent € of A. Given such an idempotent, let ¢ denote
the corresponding idempotent of A. Then the block B(¢) consists of
€A, €A and cA  as well as any module for one of these rings, the
corresponding representations and their traces.

If G is a finite group and A = R[G], we will just write the
p-blocks of G.

13. Centers.

For later applications, it is worthwhile at this stage to
consider the centers of the various algebras involved and the relations
between them. As an immediate reward, we obtain that the number of
isomorphism classes of simple F[G]-modules for an arbitrary finite group G
and a field F which is a splitting field of F[G] wmodulo its radical,
equals the number of conjugacy classes of elements of order prime to
char(F) (Brauer (1935)).

First, however, we consider an arbitrary finite dimensional

algebra A over some field F.
Lemma 13.1, J(Z2(A)) = 2(A) N JA).

Proof: As JO t= Z(A) N\ J(A) 1is a nilpotent ideal of 2(a),

JO < J(z(A)). On the other hand, if z € J(Z(a)), then 2z is a central
nilpotent element in A, whence generates a nilpotent ideal, which shows

that =z € J(A).

Corollary 13.2. Suppose F is a splitting field of A/J(A).
Then F 1is a splitting field of 2 := Z(a)/J(Z(a)) as well.
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Proof: Set A = A/J(A). By Lemma 13.1, Z 1is a subring of
zZ(A), all of whose Wedderburn components by assumption are isomorphic to

F. As Z 1is a semisimple algebra over F, the same must hold for z.

For V resp. Vv a subspace resp. an element of A, we

denote the image under the canonical map A > A/J(A) by v resp. V.

Following R. Brauer (1956), we now define
(1) S(A) = spanF{ab—ba | a,b & A}.
It immediately follows from this definition that

(2) S(A) = S(A).

Proposition 13.3. Assume F is a splitting field of A. Then

i) A = z(3) ® s(3). 1In particular, the codimension of
S(A) + J(A) in A equals the number of isomorphism classes of simple

A-modules.

ii) The number of blocks of A equals dimFZ. In
particular, Z = zZ(A) if and only if each block of A contains exactly

one isomorphism class of simple modules.

2
Proof: Let A = @ Als where the Ai's are the

Wedderburn components. Then

(3 S(3) =
i

S(a.).
i

<
=1
Choosing the standard basis of A = Maty (F), it is easy to see that

- 1 . . .
S(Ai) = {K e Ai Tr(M) = 0> 1is of codimension 1 in Ai' Obviously,

Z(Ai) ~ F 1is a complement, and 1) follows.
T

ii) Let 1 = iil € where the e, 's are the block
idempotents of a. as Z = 2(4)/J(2(s)) by Lemma 14.1, T = T o, is
a primitive idempotent decomposition of 1 in Z. However, as F 1is a
splitting of zZ by Corollary 14.2, we deduce that 2Z = spanF{Ei,...,gr}
proving the first statement. Now the second statement follows from the

first and i).
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Next we need a technical result.

Lemma 13.4. i) Let a,b e A. Then

r r

r
(4) (asb)P = 2P+ bP mod s(a)

for all r.

ii) Assume F 1is a splitting field of A/J(a). Let
¢ A > A denote the map a > aP. Then =(S(a)) c S(A) and : induces
an isomorphism on 4A/S(A).
i
iii) S(A) + J(a) = ta € a|a’ € S(A) for some i€ K}.

Proof: 1) As ab = ba mod S(A)}, (a+b)p = aP+b? mod S(A),

and (4) follows by induction.

ii) It suffices to consider the case when A 1is simple,
where it immediately follows, as A = FI @ S(A) where I 1is the identity
matrix, and S(A) = {4 & A | TrM = 0} as we saw in the proof of

Proposition 14.3. This forces c(s(A)) E.S(K), while ¢(FI) = FI.

iii) follows from 1i).

For more results along this line, we refer the reader to

KUlshammer (1981).

Je now return to group algebras. Let G be an arbitrary
finite group and Bl By representatives of the conjugacy classes of
G. Denote the conjugacy class containing g; by Ki and define
[Ki] = I g. First we observe

g€ Ki

Lemma 13.5. Let { be an arbitrary commutative ring. Then
(5) Z(3[G6]) = sPanﬁ{[Kl]""’[Kk]}'
Proof: Easy exercise.

Again, let (F,R,S) be a p-modular system and denote the

maximal ideal of R by (7). By Lemma 13.5, we have that
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(6) Z(rR[G]) g S = Z(s[GD)
and
(7) Z(R[G1)/(=)z(rR[G]) ~ Z(F[G]).

At this stage we may as well present a useful criterion due to
R, Brauer, which indicates precisely when two irreducible characters lie
in the same p-block. In particular, this is completely decided from the
character table.

Recall that if S 1is a splitting field, then any irreducible

character Y defines a central character wyt z(s[Gl) = s given by

, - xta)
\8) Ni(a) X(l) .
Theorem 13.6. Let Xq and Xy be irreducible characters of
G. Then e and “ lie in the same block of G 1if and only if
(9 w1([1(]) = w2([1(]) mod ()

for any conjugacy class K of G.

Proof: This is an easy consequence of the fact that
Z = (Z(F[G]) + J(F[61))/J(F[G]) = SpanF{El,...,gr} where ey e are
the block idempotents of F[G] and ey =e, ¥ J(F[G]), as we saw in
Proposition 13.3. Ue recall that wl([K]) is an algebraic integer. Hence
5, maps Z(R[G]) onto R and (7)2(R[G]) onto (m). Consequently, the
induced map wi([K]) = wi([K]) + (7) 1is a represgntation of Z(F[G]) > F
with J(Z(F[G])) contained in its kernel. It now follows from the

structure of Z that the induced representation E& : Z > F satisfies

_ 1 if 4. e B.
(10) w.(e.) = : J

o 0 if ;¢ B

where B, = e.F[G].
] ]
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Lemma 13.7. Set A = F[G], and assume F 1is a splitting field
of A/J(A). Then

(11) $(a) = {Zo. g’ I x =0 for all i=1,...,k}.
& gek, J
i
Proof: It easily follows from the definition of S(A) that
S(A) 1s spanned by elements of the form =xy-yx, where x,y & G. As xy
and yx lie in the same conjugacy class, one inclusion above 1is
established, Conversely, as x-lgix = gi mod S(A) for all 1i=1l,...,k and
all x € G, we have that

(12) ag=( I ag)gi mod S(A)

which proves the other inclusion.

An element in G 1is called p-regular, if its order is prime to
p, otherwise p-singular. An arbitrary element g € G may be written
uniquely as g = gpgi where g is a p-element, g' 1is p-regular and
gp and g' commute, as is easily established by considering the group

<g>. This is called the p-decomposition of g.

Theorem 13.8 (Brauer (1935)). Let G be a finite group and
F a splitting field of F[G]/J(F[G]) of characteristic p > O. Then the
number of isomorphism classes of simple F[G]-module equals the number of

conjugacy classes of p-regular elements.

Proof: Set A = F[G] and let g € G be arbitrary, with

n
p-decomposition g = gpg'. Choose n € N with gP = g'., Then
n

n n
(13) (g-g')p gp - (g')p mod S(A)

= 0 wod S(A)

by Lemma 13.4i). Hence g-g'e€ S(A) + J(A) by Lemma 13.41iii). Let
§107 098y denote the p-regular elements among Blrr a8y with suitable
notation. Again, as x-lgix Z g mod S{A) for all x € G and arbitrary

i, the fact that g = g' mod(S(A) + J(A)) shows that
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(14) B/S(R) = spanglg; + S(A) + J(&) | i=1,2,...,10}

in A/(S(A) + J(&)), where & = A/J(A). Thus it remains to show that

these elements are linearly independent. Assume therefore that

(15) ST € S(A) + J(A).

n -3 2>

i=1

Then Lemma 13.411i) asserts the existence of an n such that
L n

(z O.igi)p € S(A). But then Lemma 13.41i) yields that

i=1

. n
(16) R gip € 5(a).

However, as Bysrresg: form a set of representatives of the p-regular
N

n n

conjugacy classes, so do glp ,...,gﬂp . Hence a = 0 for all i by

5

Lemma 13.7 and we are done.

14. R-forms and liftable modules.

Let (F,R,S) be a p-modular system, let (-) be the maximal
ideal of R and let A be a finite dimensional algebra over R. Set
a=as, 5 and A = AJAT.

Before we start, let us point out an important consequence of
the fact that R 1in particular is a P.I.D. Namely, if M 1is an R-free
s-module, then any A-submodule of ¥ 1is R-free, too. This, of course, is
not usually the case with factor modules (thus A 1is a torsion module
over R). For this reason, an A-module will for the rest of this book,
unless otherwise stated, mean a module which, considered as an R-module, is

free (and finitely generated, of course).

Definition 14.1. Let M be an A-module. By an R-form of M
we understand an R—free A-module M such that M = ¥ Y S.
Lemma 14.2. Any A-module has an R-form and if M is an R-form

of M, then rankR ¥ o= dimS .
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Proof: Let {ml,...,ms} be an S-basis of M. As M we then
choose the A-module spanned by {ml,...,ms}, to obtain an R-form of M.

On the other hand, if X 1is an arbitrary R-free A-module, then

dimS(X N S) = rankR(X), from which the second part follows.
Given any A-module M and any R-form ¥ of M, we may
consider the A-module M := M/M<. It is usually possible to choose

different non-isomorphic R-forms of the same A-module M as we shall see.

Nevertheless, it is easy to see that the multiplicities of the simple

A-modules of M are independent of the choice of M, as we will

experience in the next section,

Definition 14.3. An A-module L is called liftable if there

exists an A-module ﬁ such that L/ﬁ” = L. We call L a lift of L.

In particular, as we have seen, all p.i.m.'s of A are
liftable. Also we stress the fact that in general, lifts are not

uniquely determined. However,

Lemma 1l4.4. Let P be a p.i.m. of A. Then lifts of P are
uniquely determined up to isomorphism and, in particular, are p.i.m.'s of

A

Proof: P may be lifted to a projective A-module P. Suppose

Q 1is another lift. As P 1is projective, there exists & : P > Q with

P
(1) “ 1

0——Q"——+Q—=P—=0

S

~

As Ker & = Q7, o must be surjective. As Q 1s R-free, & 1s injective

as well, and thus § = 6.

If A = R[G] for some finite group G, it is possible to

prove a more general statement than Lemma l4.4. Namely, if H < G and
A
Iy is the trivial F[H]-module, then any direct summand of Ly ¢ s

liftable. This will be proved in Chapter II, Section 7.
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Let us return to our general setup. Recall that if A 1is a
ring and X and Y are A-modules, then HomA(X,Y) is denoted by
A
(X,Y)

Lemma 14.5. Let Mi’ i=1,2, be arbitrary A-modules. Let
M. =M /M7 and M, =M. g  S. Then
i 1771 i i

R
A A
(2) (Ml,Mz) /(V V ) CZ(M 2)
A ~ o~ A
(3) (MI’MZ) B S = (Ml’Mz) .

In particular, if G 1is a finite group and A = R[G], and S 1is a
splitting field of S[G],

R[G])

(4) rankp (¥ ,M,) = Oy ooy )

LN
I’l Mz G

where G is the character of Mi.
1

Proof: (2) is trivial, while (3) follows from the following
observation: As Mi is naturally embedded into ﬁi’ (MI’MZ)A is
naturally embedded into (Vl VZ)A. Choose o arbitrary in the latter.
As any element of S 1is of the form r-" for some unit r € R and
some n € N, we see by applying & to some basis of Ml that

m

R (Ml,I{z)A for sufficiently large m.

Warning: Usually, equality does not hold in (2).
Definition 14. 6. Same notation as above, Maps of (El,ﬁé)A

lying in ) /(L are called liftable.

1,“
It is usually very difficult to prove that a homomorphism is

liftable, except if one of the modules involved is projective.

Theorem 14.7. Let ¥ be a liftable_;—module and P a
projective F[G]-module. Then all maps in (P,M)A are liftable.
_ If A = R[G] for some finite group G, then all maps of
(M,P)A are liftable as well.
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Proof: Let M be a lift of ¥, P the lift of P. Then
Lemmas 5.4 and 11.7 combined yield the first statement, while the second

follows by duality.

Remark: For modules over group algebras, this is actually a
special case of a more general result, which will be proved in Chapter II,

Section 6.

Remark. There is at least one more general and very important
case, in which homomorphisms of F{G]-modules are liftable, namely if the
modules involved are direct summands of permutation modules. This will be

discussed in Chapter II, Section 7.

To summarize the results of Lemma 14.5 and Theorem 14.7, we

have

Proposition 14.8. Let A = R[G] for some finite group G.

Let Ml’ M2 be A-modules, and set Ei = Mi/Mi' for 1 =1,2. Assume
furthermore that S 1is a splitting field of S[{G]. Then all maps in

(EI’EZ)A are liftable if and only if

R L
(5) dlmT(Ll,Mz) = (‘_l,nz)G

where ¥. 1s the characters of M. 3  S.
1 1 "R
Corollary 14.9. Suppose S 1is a splitting field of S{G].
Then F 1is a splitting field of F[GI/J(FIG]).

Proof: With the notation above, F 1is a splitting field of
A/J(X) if and only if (E,E)A =~ F for any simple A-module E, that is
if and only if the multiplicity of E 1in its projective cover PE equals
dimF((PE,PE)A) by the remark following Corollary 5.9. However, this
number is independent of F as long as S 1s a splitting of S[G] by

Proposition 14.8.

If we still assume that A = R[G] for some finite group G,
it is possible to generalize Lemma 14.4. But first, we give a formal

proof of the fact mentioned in the remark closing Section 6.



59

Theorem 14.10. Let P be a projective R[G]-module. Consider

an exact sequence of R[GJ-modules
(6) 0>P>M~>X~> 0.

In particular, we assume that M/o(P) 1is R-free, or in other words, ¢(P)

is a direct summand of M, considered as an R-module. Then (6) splits.

Proof: By assumption, the induced dual sequence is exact, too,
* * *
. 7) 0«P «M «X <0,

* % *
{owever, as evidently P /P - = (P/Pw) , which is projective, we have that

k3

? is projective and therefore (7) splits. Hence (6) split as well.

Corollary 14.11. Let M be an R[G]-module and set M = M/Mr.
et P be a p.i.m. of R[G], and P the corresponding p.i.m. of F[G].
fhen P 1is a direct summand of M if and only if P 1is a direct summand

of M.
Proof: One way is trivial. Conversely, if M ~ P & X for

some F[G]-modure X, it suffices to prove that a sequence of the form (6)

«xists, To obtain this, we consider

.8)

MM P—0
where 1 exists as P 1is projective, Moreover, as Ker ¢ = P,

N a(P) = «(P)~, which proves that 4(P) 1is an R-direct summand of M

isee Definitien 17.1).

15. Decomposition numbers and Brauer characters.

Let (F,R,S) be a p-modular system, and let A be a finite
dimensional algebra over R. Set A = A/AT where (7) 1is the maximal

ideal of A and A = g EI S.
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We have seen how not only K, but A as well is a direct
summand of its indecomposable 2-sided ideals. As mentioned in the previcus
section, we will in due time prove (and in fact, the proof is very easy)
that if G 1is a finite group and M 1is a direct summand of a permutation

module of F[G], then End ](M) is liftable. So the class of algebras

FlG
we want to consider in the following, will at least include all
endomorphism rings of direct summands of permutation modules of finite

groups.

We recall that an A-module is supposed to be R-free (and

finitely generated). The key to our discussion is the following fact.

Theorem 15.1. Let X and Y be A-modules such that
X CIN S~ Y By S. Then any simple A-module occurs with the same
multiplicity in X/X7 and Y/Y-.

To prove this, we first point out an obvious but very important

fact:
Lemma 15.2. Let M be an ;—module, and let ﬁl and ﬁz be
R-forms of M. Then there exists an injective A-homomorphism : : Ql > ﬁz.
Proof: We may as well assume that
~ ~ - /;
(1) M CM, 8 S =1 8 S,
In particular, for any v & ﬁZ % S, there exists n e N such that
n ~ . ~ g . .
v € M2 g 1. In particular, Ml*m c M2 8 1 for sufficient large m,

from which the lemma follows.

Proof of Theorem 15.1 (Serre (1967), III.2.2). By Lemma 15.2, we

may assume that X C Y. Hence there exists r e N with y-F c X. We now
apply induction to r : Assume r = 1. Then there exists an exact
sequence

(2) 0> Y7/X~ > X/X~ > X/Y- > 0

(3) 0> X/Y= > Y/Xn > Y/X > O.
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However, as Y/X = Y7/Xn as A-modules, Theorem 15.1 holds in this case.
Next assume 1 > 1. Set Z = T‘r_lY + X. Then ﬁr_lYEZ <Y,
and Z~ & X< Z. So by induction, the theorem holds for the pairs X and

Z, Z and Y, and hence for X and Y.

We now impose an assumption on A, namely that A is
semisimple.

Let Ml""’Mk be a full set of representatives of the
1""’EQ likewise of thf
simple A-modules. Denote the projective cover of E by P, and let Pi

isomorphism classes of simple &—modules, and E

be the 1ift to A of Pi.

Definition 15.3. Assume A 1is semisimple, and use the

notation above. The decomposition numbers dij’ i=l,...,k, J=1,...,8L

are defined as the multiplicity of Ej as a composition factor of any

R-form of Mi reduced modulo (7). Note that thus dij depend on R.

Lemma 15.4. Same notation and assumption as in Definition
15.3. Assume furthermore that S 1is a splitting field of A and that
F is a splitting field of 4a/J(&). Then

k i
(4) P.a_S=> @& M I

Proof: Let Mi be an R-form of M,. By Definition 15.3,
Theorem 14.7 and Lemma 14.5,

o A SO Ay 8 oA
(5) dij = dlmF((Pj,Mi/Mi ) = rankR((Pj,Mi) ) = dlms((Pj g S’Mi) )

from which (4) follows as A is assumed to be semisimple.

It follows from the definition of a block of A that di' =0

if Mi and Ej do not belong to the same block. Each block ES defines

a decomposition matrix DS = {dij}, where MS and ES run through the
. ~ i j
simple A- resp. A-modules of BS. By the decomposition matrix of G,

we medan
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(Dl 0 ol
0 D,

(6) D= < r
0 D
L T

if G has r blocks.
We notice that DS is indecomposable, i.e., for no

rearrangement of rows and columns is it possible to write DS as
s
(7)

again by the definition of a block.

Theorem 15.5. Same notation and assumption as in Definition
15.3. Assume further that F is a splitting field of A, and let C
denote the Cartan matrix of A. Then C is symmetric. Assume
furthermore that S 1is a splitting field of K, and let Dt denote the

transpose of D. Then
t
(8) DD=C.

Proof: By Corollary 5.9, Lemma 14.5 and the fact that A is

semisimple,

(9)  c..=dim ((P. @S, P, @ $)*) =dim ((P, 5, P, 8 ) = c...
1] s ] 1 S 1 ] J1

If furthermore S 1is a splitting field of ;, we moreover have that

(9 c,. =

rd .d .
ij sj si

by Lemma 15.4,

Remark. It is not always true that C is symmetric, if F

is not a splitting field of A.
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From here on, we will assume that A = R[G] for some finite
group G. As we have seen, certain problems in characteristic p may be
transformed to problems in characteristic 0, and hopefully the rich
theory of characters may then help us. To take advantage of this, we
therefore introduce the concept of a Brauer character, which is based on
the following observations:

As R 1is local, the restriction of the canonical homomorphism
R > R/(m) = F to the set of units R* in R 1is an isomorphism onto
- F\{0}. Denote the inverse of this by ",

In the following, we assume S 1is a splitting field for all

subgroups of G. Let M be an arbitrary F{G]-module and x & G any

p-regular element. Then M is semisimple, and we may choose a basis
Y

for M so that the matrix of x w.r.t, this basis is a diagonal matrix

{xij}-

With this notation, we now introduce

Definition 15.6. By the Brauer character OM of M, we
understand the function Oy GO > S, where G0 is the set of p-regular

elements in G, defined by

(10 & (x) =

He 1A
-
-

In particular, QM(x) is an algebraic integer, Py is a
class function, and we note that Brauer characters are just ordinary

characters if p does not divide EG{. Also given an exact sequence
(1) 0> M >M> M >0
of F[Gl-modules, we have that

(12) Cyp = C Cogr

*
Moreover, if M denotes the dual module of M as usual,
1

@M*(x) = :M(x- ) = Q;?x), and thus &, and éM* are complex conjugate,

M
However,

Warning. An algebraic conjugate of a Brauer character is not

necessarily a Brauer character. Without going into detail, we just mention
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that A8 provides a counterexample in characteristic 2. However, if two
F[G]-modules are algebraically conjugate, then so are their Brauer

characters.

Recall that (Corollary 14.9) as S 1is a splitting field of
s{G], F is a splitting field of F[G]/J(F[G]) and thus F[G] has &
different simple modules Ej, where 4 1is the number of conjugacy classes
of elements of order prime to p by Theorem 13.8. The Brauer characters

{@j} of these modules are called the irreducible Brauer characters.

Let  X;s-++5X, denote the irreducible characters of §[G].
The projective F[f]—cover Pj of Ej lifts to the R[G]-module Pj' and
the character of Pj BRS will be denoted by ¢j. Finally, the
decomposition matrix is denoted by D = {dij} and the Cartan matrix by

C={c_ .} . We then have the following relations.

st

Lemma 15.7. At elements of order prime to p, we have

Dox =t
J
ii) ¢ =% d
i) e o Cstt
while at all elements in G,
Sy 6 o
iii) % Zdi X

ti = .
In particular, (@S,Qt)c Cor
Proof: 1) and ii) are by definition, while iii) follows from

Lemma 15.4.

For X € G a union of conjugacy classes, let CharS(X)
denote the vector space over S of class functions from X into S. We

then define a (non-singular) inner product on CharS(X) by

1 -1
(13) (nyeny)y = Lo xn,x ).
1’ 27X G x€ X 1 2
Recall that GO denotes the set of p-regular elements of G.
We now make the following interesting observation.

Proposition 15.8. Let x € G be p-singular. Then Cs(x) =0
for all s=1,...,%.
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Proof: We may as well assume that G = <g> for some g ¢ G,
as the restriction of a projective R[G]-module to a subgroup remains
projective, Let g = g'gp be the p-decomposition of g. Then
ord (g') = &, and the irreducible Brauer characters of G are simply the

irreducible characters of <g'>. Moreover, as F[<g'>] 1is semisimple,

Y= 0 $<gf is the character of a direct summand Q of A = R[<g>].
s 5 <g' > s
Hence,
AN 2,

(14) A, @ P = @8 Q

A s=1 ° s=1 °

[ = 2 s !

and as s Y eg's ord(gp)bS » Cog # 0 and the O '8 clearly are

linearly independent, it follows by Krull-Schmidt that WS = @S, which

yields the statement.

Another way of stating Proposition 15.8 is, that
(Qs’ot)G = (vs’ot)G )
0
This allows us to supplement the basic Lemma 15.7 with the

following omnibus theorem.

Theorem 15.9. Same notation as above.

i) {él,...,Q } and {90

. 1""’®Z} both form a basis for
X
t

CharS(GO). In particular, the decomposition number and the Cartan

invariants are uniquely determined by Lemma 15.7i) and ii).
ii) det C # 0 and the rank of D 1is 2.
iii) a) {($S,Q )} =C
b)Y (% ,2.) =3

c) Let BaseoaBy be representatives of the conjugacy

classes of p-regular elements. Then

. -1
2yley T CRERRIE

(15) I e.(g.
A R i, 1

] 1

Proof: As the dimension of CharS(GO) is &, 1) will

follow from Lemma 15.7ii) if and only if we can show that {¢ ¢}

1y
spans CharS(GO). To see this, we first choose a natural basis of

CharS(GO): For 1 =1,2,...,2, define
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k
(16) o= L oy.(g, )xj .

f\ =&, . ‘ ; vyt G.).
Then hi(gj) LiJ\CG(gi)\ and thus {“1, »...}  spans Chars( 0) Now

for i arbitrary, but fixed, let {ps} denote the set of irreducible
. R - -1
characters of <g;>. Now, if we set A= L “s(gi );S, we observe that
S A

A I
Ai = Ai'G. However, as F[<gi>] is semisimple Ve

a direct summand of R[G], i.e., of a projective module. Therefore ‘s

is the character of
AG

belongs to Spans{él,...,él}, and consequently Ai does as well,

Now ii) follows from i) and Lemma 15.7.

By Proposition 15.8,
(20) C=4(¢ ,9 ), =1(2,2). =C7I
s s

where [ = {(:s’at)Go}s,t Hence [ =C , as C 1is non-singular,

which proves iii) a) and b). Finally, c¢) follows from the classical

orthogonality relation:

. -1
(2D o8, Jc (g )] = . (g, dn.lgl )
i, 12 G 11 ; LT, 12
- -1
=53 dlS:S(gi )dijAJ(gi )
i 1 2
. -1
=3z cJS:S(gi )z (g;7)
] 1 2

16. Basic algebras and small blocks.

This section is partly inspired by some recent work by
J. Brandt (1982). Our main concern will be to throw some light upon the
relations between the number of irreducible characters and the number of
irreducible Brauer characters in a block. In particular, we present a
new and very short proof of the characterization of blocks with precisely
one irreducible character, Brauer and Nesbitt (1941), without even
mentioning what a defect group is. Our first observation is straight-~

forward and goes by to Brauer and Nesbitt (1941).
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Let G be a finite group and let (F,R,S) be a p-modular
system such that $ 1is a splitting field of S[G]. For B a block of
R[G], we let k(B) denote the number of irreducible characters in B and
L(B) the number of irreducible Brauer characters in B. We observe that
as the decomposition matrix of B has rank ((B), we must have

kB) > L(B).

Proposition 16.1. There is a one-to-one correspondence between

blocks B of G with k(@) = 1 and irreducible characters of G, whose

degree 1s divisible by the order of a Sylow p-subgroup.

Proof: Let [G| = pah, where (p,h) = 1, and let ¥ be an
irreducible character of G such that pa divides x(1). The

corresponding central primitive idempotent of S[G] has the form

1 -1
(1) e=§%—% ZGx(g )g.

g€

However, Xﬁl%— € R by assumption, and thus ¢ € R[G] as y(g) 1is an
algebraic intéger for all g. Hence € must be a block idempotent in
R[G]. 1In particular, k(B(e)) = 1.

Conversely, if ) 1s the only irreducible character of a
block B, then in particular, the character of the p.i.m. in B 1is a
multiple of x and consequently x{(x) = 0 by Proposition 15.8. Hence
p? divides ¥(1).

Corollary 16.2. Let lg| = pah where (p,h) = 1. Let Y be
an irreducible character of G. Then pa divides (1) 1if and only if

¥ vanishes on every p-singular element.

Remark. We point out that the formulation of Corollary 16.2
does not require any concepts from modular representation theory. It is in

fact possible to prove it in characteristic 0. See Feit (1967).

Let B(€) be a block of R[G], and let € be the
corresponding block idempotent of F[G]. Set B = gr[G], the
corresponding block of F[G]. Then
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(2) HB@))=dm%@(M)

as we saw in Section 13. So in order to find relations between the
structure of B and the number of irreducible characters in the
corresponding block of R[G], we apparently have to study Z(B).

In the following, we therefore let F be any field and B a

finite dimensional algebra over F which is indecomposable as an algebra.

Let LR be representatives of the conjugzcy action of the units of
B, which are mutually orthogonal. Then ey = I 2. 1s an idempotent.
i=1 *
Definition 16.3. By the basic algebra BO of B, we
understand
(2) By = EndB(eOB).

Lemma 16.4. With the notation above, we have

i) B0 = eOBe0

ii) Z(BO) =~ 2(B) as F-algebras.

Proof: 1) is Corollary 5.5.

ii): Let ¢ : B> B be the F-linear map b > e for

0 0®o
b € B. We claim that the restriction of % to Z(B) 1is a ring
homomorphism onto Z(BO). Indeed, as &(z) = eoz = zeg for z € Z(B),
it already follows that ¢ 1is an algebra homomorphism. Assume next that

#(z) = 0 for =z € Z(B). Then
(3) zu Te,u = u zeu = 0

as well for all units in B and all 1i=1,...,2(B), and consequently

ze = 0 for any primitive idempotent e 1in B, which proves that z = O.
Finally, we must prove that &(Z(B)) = Z(BO). To see this, choose n so
that BB is isomorphic to a direct summand of (eOB)n, which is possible
by our choice of g Then E := EndB((eoB)n) = Matn(Bo), and consequently
Z(E) = Z(Bo). However, using the successful argument above, we may now
prove that Z(E) maps isomorphically into Z(B), and it follows that
Z(B) and Z(BO) have the same dimension over F, which in turn forces

$(Z(B)) = Z(BO).
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Lemma 16.5.

b

(4) zleBe ) © 121 z(e;Be.).

Proof: If 2z ¢ Z(eOBeO), then ze, = e ze, for all i and

thus z e @ eiBei, from which (4) easily follows.

i
Set E.. = (e.B,e.B)B. Then E.. 1is a ring for all i, and
ij i) ii
EndB(eOB) ~ @ E... In the following, we therefore identify these. If
i,]

B 1is symmetric, we now have an important partial converse to Lemma 16.5:

Lemma 16.6. Let B be symmetric and let ¢i € Z(Eii) with
the property that all composition factors of ci(eiB) are isomorphic to
the socle of e.B. Then ¢. € Z(End_(e B)).

1 1 B 0

Proof: Let v € Ers' Then ¢iw = 0 by assumption

I
<
©

unless r = s = 1, where by assumption cip = yd. . Now the assertion

follows from Lemma 16.5.
Let us see how we can make use of this in a group algebra.

Theorem 16.7. Same notation and assumption as in the beginning
of this section., Then one of the rollowing always occur for a block B

of R[G], with corresponding block B of F[G]:
i) B 1is a simple ring

i) k®) > 1®) + 1.

Proof: (With the notation used in Definition 16.3). Let
¢i € Eii be a map whose kernel is the radical of eiB, using the fact
J(E..)+F1,
ii
where 1 1is the identity of eiB. Now, by choice of ¢i, @iw w¢i =0
for all + € J(E;;), and thus o, € Z(Eii)' Hence ¢i € Z(End (e B)) by

that B is symmetric. Also by our analysis in Section 5, E

ii

Lemma 16.6. Hence k(B) > i(B) + 1 unless the identity map of eOB is

spanned by the 4. 's, which forces £ =1, and ¢, to be the identity

of E which is equivalent to B being a simple ring.

1,1’
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Corollary 16.8. The following are equivalent for a block B
of R[G] with corresponding block B of F[G]:

i) B is a simple ring
ii) k@) =1

iii) The Cartan matrix of B 1is {1}.
Proof: Clear.

We now come to the main result of this section, which
essentially is due to Brandt ((1982b), Thm. 2.6). Recall that the i'th
socle of a module M 1is denoted by Si(M)'

Theorem 16.9. Let AO be a symmetric algebra over F  such

that all simple modules of AO are l-dimensional. Let 1 =

primitive idempotent decomposition., Then

. )
(3) S,(e;Bre.) AC)
for all 1=1l,...,%.

Proof: As eiAOei is symmetric (Theorem 7.6),

S.(e.A e.) € S;(e.,A ), which is assumed to be l-dimensional. Hence
17101 =110

Oei be

equality holds. Now choose ae Sz(eiAOei) and let b e eiA
Oei) ® Fe,, we may in fact choose

0% = J(eiA
b e J(eiAOei) = J(eiAO){\ eiAOei. By Lemma 8.3 and the fact that AO is

symmetric, ab and ba both lie in Sl(eiAOei). Let 0 # s € Sl(eiAOei)

arbitrary. As eiA

and choose fl’fZ € F with ab = f s, ba = f_s. Let A be the symmetric

1 2
form of AO. Then
(6) 0 = X(ab-=ba) = (fl-fz)k(s).
However, as FS is an ideal of eiAOei’ A(s) # 0, and consequently
f1 = f2’ which proves that ab = ba.

Now, if we return to the situation we had in Definition 16.3

through Lemma 16.6, Theorem 16.9 yields
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Corollary 16.10. Let ¢i € Eii with ¢i(eiB) of Loewy
length at most 2, Then ¢H_e Z(eOBeO).

Proof: If Di(eiB) is of Loewy length at most 2,

ai(ei)J(B)ej‘g; Sl(eiBei)’ which proves that ai(ei) € Sz(eiBei).
Again, let us see how this applies to group algebras.

Corollary 16.11. Same notation and assumpticn as in the
beginning of this section. Let B be a block of R[G] and assume
k(B) = 2. Then 1(B) = 1, char F = 2, and the decomposition matrix of
the corresponding block B of F[G] is

1

(7
1

Moreover, if E denotes the simple B-module and n = dimFE,

(8) B = Mat (F[z_]).
n 2

) a a-1

Furthermore, if 'G' = 2°h, where h 1is odd, then n = 2 m where m

is odd.

Proof: The first part of the statement is due to Brandt (1982).
By Theorem 16.7, 1(B) = 1 and with the notation above, b(B) = 2 =
dlmFZ(eOBeO) forces e Be, = SZ(elBel)' l1.e., e Be1 and consequently

1771 1

elB is of Loewy length 2, as all composition factors of elB are

isomorphic to E and elBe1 is symmetric. Thus elBe1 is a symmetric

algebra of dimension 2, and
(9 B = Matn(elBel).

Let X1y X, be the irreducible characters of B. Then X1+ Xy is the
projective cover of E. 1In particular, pa divides Xl(l) + Xz(l) by

Corollary 9.5, where [G! = pah with (p,h) = 1. However, Xl(l) =

Xz(l) = n, and by Proposition 16.1, Xi(l) is not divisible by p?

This forces p = 2 and thus xl(l) =22l for m odd.
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Finally, let o € elJ(B)el. Then uz = 0, and thus
(1+a)2 =1, as p = 2. Hence <T> = z, where T = l+a, and
e Be. = Fl<1>].

1771
Corollary 16.12. (Brandt (1982b)). Same notation as above.
Let B be a block of R[G], and let B be the corresponding block of

F[G]. Assume k(@) > 2, and let E represent the isomorphism

1 Em)
classes of simple B-modules. Then

2(®)
(10 k@B) > 1+ 2@) + I dim Ext

](Ei,E.).
1=1 .

1
F[G
Proof: Note that if 2(B) > 1, then all p.i.m.'s in B have
Loewy length at least 3, while if 2(B) = 1, the p.i.m. of B has Loewy
length 2 if and only if k(B) = 2 by Corollary 16.11. Thus all p.i.m.'s
of B have Loewy length at least 3 by assumption, and (10) follows from
Theorem 16.9, as the identity does not have an image of Loewy length at

most 2.

Corollary 16.13. TLet P be a p-group and F a field of

characteristic 2. Then the penultimate radical of F[P] 1is contained in

z(FlpD).

Remark. It is in fact not difficult to exhibit a basis of
SZ(F[P]), which equals the penultimate radical of F[P] as remarked in
Section 10. As we saw in Corollary 10.11, the dimension of SZ(F[P]) is
n+l, where n = rank(P/®(P)). Let XpseeesX be generators of P. For
each X5 choose Pi AP of index p with P = <Pi’xi>' For Q < P,

set I(Q) = I

. Then
geQ ®

(11) (5(P), 2(P.)(1-x.)P7%}
1 1

form a basis, as the reader is invited to check.

17. Pure submodules.

Definition 17.1. Let & be a P.I.D. which is local with

maximal ideal (%), and let M be a free d&-module.
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An O-submodule N of M 1is called (§-) pure in M 1if one

of the following equivalent conditions is satisfied
i) Nm = NN M7
ii) N 1is a direct summand of M
iii) M/N 1is free

iv) N + Mn/Mn =~ N/N7.

We leave it to the reader to verify that these conditions

indeed are equivalent.

Lemma 17.2. Let M be a free §-module, and let N1 and N2

be pure submodules. Then
i) le\ N, is G-pure.
ii) Assume N1 N N2 = 0. Then N, + N is pure if and only

1 2
if

(1) (N1+N2)/(N1+N2) N Mm =~ Nl/va ® N2/N2ﬂ.
Proof: Exercise.

Warning. It is not in general true that the sum of two pure

submodules again is pure, obviously.

The reason for paying so much attention to this property is of
course that if N &M is pure, then the reduction of N modulo (m) is
a submodule of the reduction of M modulo (7). 1In general, we only get a
quotient of the reduction as a submodule.

We now return to a finite group G and a p-modular system

(F,R,S).

Theorem 17.3 (Zassenhaus and others). Let M be an

R-free R[G]-module, and let ¢ denote the character of M gy S. Let

¢ = X1 * Xg» where Xy is a character. Then M contains an R-pure

submodule Ni such that Xi is the character of Ni B s, 1i=1,2.
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Proof: Let M ER S = V1 -] VZ’

of Vi' Set Ni =MN Vi' Then Ni is an R-form of Vi’ obviously.

Now, as Vi is an S-space,

where X is the character

(2) Nm=(MN VoT=MiAV, = N, N Mo
and thus N, is R-pure in M.

Corollary 17.4 (Thompson (1967)). Let ¢ be the character of
a p.i.m. of R[G], and let E be the corresponding simple F[GJ]-module.
Let & = X1 * Xy where X5 is a character. Then there exists an
indecomposable R-form M of X1 such that Soc(M/Mr) = E. 1In particular,

M/Mm  is indecomposable.

Proof: By Theorem 17.3, M may be choosen as an R-pure
submodule of ﬁ, where P 1is the p.-i.m. with character ¢. Hence M/Mm

is isomorphic to a submodule of ﬁ/ﬁ’, which has simple socle E.
Another way of phrasing this is

Corollary 17.5. Let x be an irreducible character of G and
let E be any simple F[G}-module, which occurs as a composition factor of
an R-form of x. Then an R-form M of ¥ may be chosen to satisfy

M/Mn ~ E.

Corollary 17.4 is extremely useful. It was this result
E. C. Dade needed to give a complete description of blocks with finitely
many isomorphism classes of indecomposable modules. We will return to this

in Chapter III.

Remark. Notice that with the notation of Theorem 17.3,
M/N1 resp. M/N2 is R-free and in fact an R-form of Xy TesP. Xy
Consequently, we might as well have chosen R-forms in Corollaries 17.4 and

17.5 with simple heads isomorphic to E rather than socles.

We have also seen in Lemma 15.2 that arbitrary R~forms of the
same S[G]-module may be embedded into each other. 1In particular, a
projective R[G]-module is never injective. It is, however, as we saw in

Section 14, injective in the category of R-free modules.
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We end this section with

Lemma 17.7. Assume S 1is a splitting field of S[G] and let
¥ be an irreducible character. Let M be an R-form of ¥, and let N
be an R-free R[G]-module. Then N 1is an R-form of ¥ 1if and only if N
is isomorphic to an R[G]-submodule M' of M. Furthermore, M' = M as

R{G]-module if and only if there exists an n € N such that M' = M.

Proof: As remarked above, N may be embedded into M if N
is an R-form of ¥ by Lemma 15.2, Conversely, if M' C M is an
R[{G]-submodule, then M' 8 S =M 8y S, as M 8y S 1is simple, and thus
M' is an R-form of ¥.

Let & : M' > M be an isomorphism. Then ¢ g 1 : M' 8, S
M 8y S 1s an isomorphism as well, hence multiplication by a scalar from
S, hence may be written as r7° where z ez and r is a unit in R.

However, as M'CM, 2z < 0 and thus M' = Mt for n = -z.

18. Examples.

Example 1. G = SL(2,4) 1in characteristic 2. Choose a
2-modular system (F,R,S) such that S 1is a splitting field of S[G].
We recall the character table of SL(2,4) =~ A_ :

5
1 2 3 5, 5,
Y 1 1 1 1 1
1-/5 1+/5
L9 3 1 0 == =
(1) ‘ , B , 145 s
%! p) 2
X, 5 1 -1 0 0
Xs 4 0 1 -1 -1

where a conjugacy class is identified by the order of an element in it and,
if necessary, an index. Thus F[G] has 4 isomorphism classes of simple

modules. As we have chosen G very wisely, we immediately see two
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non-trivial simple modules, 2, and 22 algebraically conjugate of
dimension 2. So, together with the trivial module I, we know three of
the four simples. However, by Corollary 16.8 and Proposition 16.1, we
know that F[G] has exactly one block which is simple, with X5 as the
character, and the simple module 4 of that block is of dimension 4.

(Actually, 4 = 21 8 2 which is the so-called Steinberg module. Any

»
group of Lie type has zxactly one block in the describing characteristic
which 1is simple, and the corresponding simple module is called the
Steinberg module. For representations of groups of Lie type, we refer
the reader to Curtis-Reiner (1985).

From Theorem 13.6 it follows that {Xl’XZ’X3’X4} form
another block. Now, the small dimensions only leaves the following

possibility for the decomposition matrix

I 21 22 4
X, 1 0 0 0
Xy 1 1 0 0
(2)
X3 1 0 1 0
Xy 1 1 1 0
XS 0 0 0 1

(3)

However, it still takes a lot of work to determine the Loewy series of the
p.i.m.'s. In the following chapter, we will develop some methods which
will make this very easy. So at this stage, we merely state the Loewy
structure of the p.i.m.'s. The reader is of course more than welcome to

try to work it out.
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P P P P
1 2, 2, A
1 2, 2, A
2.2 1 1
2
(4) L
11 2, 2,
2,2, 1 1
1 2, 2,
. (2) o (2) o (&)
and F[G]F[G] =P ® le ® le ® 4 .

Moreover, (4) yields that we may choose R-forms of irreducible
characters which reduced module 2 are indecomposable with the following

Loewy structure, using Corollary 17.5

1 4 1 %
Xy 2 1 X3 20 1
(5) 2 2
- 1 %
I 172 1 I
Xy P22 T 25

Much easier to handle is

Example 2. G = SL(2,5) in characteristic 5. Here we just
state the decomposition matrix. Again a character or a module (or a

Brauer character) is identified by its dimension and, if necessary, an

index
1 3 2 4 5
1 1 0 Q 0 0
31 0 1 0 0 0
32 0 1 0 0 0
(6) 4 1 1 0 0 0
21 0 0 1 0 0
22 0 0 1 0 0
6 0 0 1 1 0
5 0 0 0 0 1
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The p.i.m.'s have the following Loewy structure

P Ps P, P, Py

I 3 2 4 5
(7

3 I3 42 2

I 3 2 &

as the reader may easily check. Note that

1 N 1 »
(8) ExtF[G](Z,Z) = ExtF[G](3,3) = F,

. , _
Example 3. Let us compare the p.i.m.'s of Q = ZZ 4] 22 8 Z

of H = Q.K, the Frobenius group with kernel Q and complement K = Z

27
71
and of G = Q.M ~ H.L, semidirect product of @ and the Frobenius
group of order 21, which is a subgroup of Aut(Q). Thus G contains a
normal subgroup of index 3 isomorphic to H.

let P be a p.i.m. of G. By Corollary 9.6, the Loewy series

of P, P¢H and P%Q coincide. Let F be an algebraically closed field
of characteristic 2, As usual, the projective cover of a module E 1is
denoted by Prs and for T < G the trivial F[T]-module is denoted by Lo
As pointed out in Example 10.1, the Loewy series of PIQ is

ITI

(9) 11T

Let 1 denote a non-trivial simple F[H]-module. Then 1 is
_ L (gl) _ . (gi-1)
=1 = (1 da_ 1.

a l-dimensional representation of F[Z7]. Set i F

Then 1, 2 and &4 are algebraic conjugate, and so are 3, 5 and 6.
*
Moreover, 1 = 6. The reader will probably agree that the decomposition

matrix has the form



(10)

which shows that  F[H] has only one block. Moreover, we

all simples are liftable. Hence, the trivial module IH =7

79

observe that

must extend

some other module (no subgroup of index 2), say 1. Obviously, P is

algebraically invariant, whence its Loewy layers are, too.

follows from (9) that the Loewy layers of the p.i.m.'s are

P P, =P g1
IH 1 IH
I 1
H
(L 124 253
356 IH 6 4
IH 1
etc.

T

It immediately

If we go to F[G], the simples again are just the simples of

F[M], as Q 4 G. Thus the simples consist of 3 1-dimensionals, I
*

*
1, and 2 3-dimensionals 3, 3 . The decomposition matr

o L

ix 1is
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* *

1 1 1 3 3

1 1 0 0 0 0

1l 0 1 0 0 0

12 0 0 1 0 0

(12) 3 0 0 0 1 0
*

3 0 0 0 0 1

7 1 0 0 1 1

71 0 1 0 1 1

72 0 0 1 1 1

Using Corollary 9.6 again, it easily follows that P_. , P. and Pl*

restricted to F[H] all equal P as = 1. Moreover, we

I’ A
may as well choose our notation so, that 3¢H 19284
Payprn] “P1 @ P ® By

With all this information, it now follows that the p.i.m.'s

, which shows

that

of F[G] have the following Loewy series:

P I Py P 4
G
1 1 3
I, 3
* * * *
(13) 3 3 3 33 3 I,11 33
* * * * *
3 3 3 I,11 33 3 33
* *
I, 1 1 3 3

Example 4. If we return to Example 1 and replace our field
with GF(2), we will find that GF(2)[SL(2,4)] has 3 isomorphism
classes of simple modules, I, AO and 4, where 40 EGF(Z) GF(4) =
2l @ 22. It follows from (4) that the Loewy series of the p.i.m.'s

are
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I 40 4
I 40 4
4 II
(14) 0
II 40
40 I1I
I 40

and thus the Cartan matrix is

4 4 0
(15) 2 3 0
0 0 1

which is not symmetric.

Based on these examples (in particular Exp. 3) and numerous

others, we suggest the following.

Conjecture: Let J denote the radical of Fl{G], F a field.
Then Jl/Jl+1 is self-dual for all 1i.

We will see in Lemma II.l.5 that this is equivalent to

Conjecture: Let P be a projective F[G]-module. Then
i+1) i+l

1 * 1 *
dimF(PJl/PJ = dim (P JH P I3 for all i
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CHAPTER II. INDECOMPOSABLE MODULES AND RELATIVE PROJECTIVITY

1. The trace maps and the Nakayama relations.

Notation: In the following, we let - be a principal ideal
domain and G a finite group. We denote the class of right 3I[G]-~
modules which are free (and finitely generated) over - by M.(G).

Let H < G. If M€ M. (G), we denote the restriction of M

to O[H] by M, and, if Ne& M.(H), the induction X @ [y Z1G]
of N to 0[G] by Nm, or Nfg, if it is desirable to specify which
group we induce from. Thus NAG = Z N ® g., where H\G

g€ H\ G

denotes an arbitrary right transversal of H in G.
If A, Be MQ(G). the set of fixed points of G in A is

denoted by AG. Also, we set

(1) (A, B) = Hom.(A, B)

Then (A, B) is a finitely generated free ¢ -module, too. Moreover, we
observe that (A, B) in fact is an £[G]-module, if we for ¢ € (A, B)
and g e G define

(2) [ogl(a) = i)(ag‘l)

o
5

for all a € A. In particular, as we saw in Chapter I, Section 6, the

*
dual of A, which we denote by A , is (A, 9), where G acts
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:rivially on

Finally, we observe that with this notation
G _
3 (A, B)Y = Homp[G](A, B)

There is no doubt that the most important basic tool in
representation theory of finite groups is restriction to and induction fron

subgroups. Therefore the following definition plays a very central role.

Definition 1.1. Let N € M.(G). Define an O-linear map

(1) Tﬁ:bﬁ . (n1GyG

by

= G el

(3) TrH(a) = ) a ® g
%eH\G

where H\G denotes an arbitrary right transversal of H in G. We

leave it to the reader to check that Trg(a) is independent of the
A
N.G G

choice of H\G and that Trg(a) indeed belongs to ( ) if
a € NH. This map is called the (exterior) trace map.
If furthermore N & M. (G), we define the (interior) trace
map
(6) Trg : NI—I - NG
by
— G _
(7 TrH(a) = z ag,
g, € H\G
Thus TrG =€ o0 TrG, where ¢ : N+G —> N is the map

H H
Zai ® g, — Zaigi.
i !
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As soon as we have got accustomed to the trace map, we will
use the notation Tr for both of them, unless both occur at the same

time.

This is the most general form of the trace map. Of particular
interest will be the case where the trace map is applied to a module of

the form (X, Y), where X € MQ(G) and Y € MS(H)’ which has a
natural structure as an O[H]-module, as we have just seen. Thus
(8) o, OF s (x, 1
We now observe however, that

Lemma 1.2. As Z2[G]-modules,

(9) (X, Y)fg ~ (X, Yfl)

and the isomorphism is given by

(10) Z by ® gy —> v ix —> Z¢i(xg;l) ® g;
g.leH \G i
Likewise,
G _ G
(11) (X, Yot = (Xtg, Y)

as 0[G]-modules, and here the isomorphism is

(12) v $.® g, —> Y ¥ g —> [ (x)g
: ,

1 1
gieH\G 1

Proof: Obviously, the map in (10) is ©-linear and bijective.

It remains to check G-linearity. Let g € G, and let {hj}j be
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determined by 8.8 = hjgj for all i. Then (Z¢i ® gi)g = Eq;ihj ® gj is
i
mapped to wg:

(13) x —> E[¢>ihj](ng_1) ® g,
i

1

-1,-1

= 79, (xg. 'h, )h. @
Z¢>1(g] ; )b @ g
1

-1, -1
(xg. h.") ® h.g.
Z ¢1(Xg] ] ) 85

1

‘ -1 -1
E @i(xg g ) ® g8 = [vgl(x)
i
The second isomorphism is handled in a similar way. Alterna-
tively, it follows from the fi st by using the fact that if A, B € M_(G),
*
then (A, B) =~ (B, A) as £[G]-modules (see Section 6).
Remark: We observe that Theorem I.6.4 is just a special

case of this result.

It now follows that (8) induces a trace map (which we will

denote by Trg, too) :
(14) o (X, DY x, v ©
H
given by
(15) [Trg)] () = 1 olxg ) ® g
gieH\G

and likewise, if moreover Y € M _(G),

(16) Tr yH

(X, Y — (X, Y)

joslip]

by
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- G -1

(17) [Tri®)]1(x) = ) [¢g 1 (x) = z¢>(Xgi )g;
g€ H\G i

which fortunately is identical to the trace map of (7). Also,

Trg = é o Trg in this setup, where - (X, Yfg) —> (X, ¥Y) is

induced from the canonical map ¢ defined in Definition 1.1.

Similarly, we get a dual trace map

(18) Frp s (Y, X7 s (1, 06
given by
G
(19) [Frge)lC 1 y; ®gp) = 1elyg
g, € H\G 1

We observe that Frg(ds) = Trg(Q*)*, where ¢* € (X*, Y*) is the dual
map induced from ¢ € (X, Y) (see Ch. I, Sec. 6, (10)).

In particular, any result we prove about the general trace
map in (4) translates in a natural way into similar results for the special
and dual trace maps in (14) and (18). One advantage of this is that in
order to develop block theory, we need the trace map defined in (4),
while in the theory of modules we often need the special and dual trace
maps, rather. Another advantage is that the general trace map is so

straightforward to deal with. Let us demonstrate this.
Theorem 1.3. With the notation of Definition 1.1,

(20) Trg N (vTGG

is an O-isomorphism.

Proof: By definition, TrSI is injective. On the other hand,
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) +G.G _
if iZai®gie(N Y7, then iZai®gig—12ai®gi for all g € G, and

consequently a :=a., = a, for all i, j. Thus Za. ® g. = TrG(a).
i j ! i H

Corollary 1.4 (The Nakayama Relations).

i) Let X € M (G), Y € M (H). Then

e

(21) Trg cx, s (x, wg)G

is an ©-isomorphism. Its inverse is the map induced from

G G .
PrH :Y‘fH —> Y, mapping Zyi® g, to vi8y where g€ H.

i) Let X € M _(H), Y € M (G). Then
<) S}

H

(22) Frg: x, vl 5 (x48

H’

vy G

is an 0O-isomorphism. Its inverse is the map induced from

G G . -1
lnH t X — X‘PH, mapping x to xg, ® g1 where g € H.
G

In particular, if X, Y € MG(G), then (X, Y+H) B (X+g, Y)

as an C[G]-module, and we have the following diagram

(X, Y
Trg P}g
(23) X, v) ——— s (x, )°
Frg 1%3
x2, V¢

Proof: By our discussion above.

Notice however, that conversely, Theorem 1.3 is a special

case of The Nakayama Relations. Indeed, if I denotes 0O with trivial

G.,G

G-action, and M € M_(H), (21) states that (I, Y)' = (I, v+5) ¢,
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which is just another way of expressing (20).

Example 1. Let G be an arbitrary group, let F be any
field of characteristic p, and let Q <G be a p-group. Let E be
any simple F[G]-module, and denote the trivial F{Q]-module by IQ‘
Then IgG contains a submodule and a factor module isomorphic to E.

This follows from (21) and (22), as any composition factor of E is

Q

isomorphic to IQ'

Example 2. Let Q be a p-group. For V <Q, denote the
+Q

trivial F[V]-module by IV. Then IV is indecomposable. Indeed,
by Theorem 1.3,
(24) dim_(Soc(I+Y) = dim_(Soc(1,)) = 1
F \4 F A%
. +Q .
as Q is a p-group. Consequently, IV cannot be the direct sum of

two modules.

~

Likewise, f{,Q is indecomposable, if IV denotes the trivial

R{V]-module.
The following application will be of great use later.

Lemma 1.5. Let F be a field of characteristic p and let
E be a simple F[G]-module. Let P denote the projective cover of E

and J the radical of F[G]. Then

(25) dim(psi /ety = aim(oigit, HG)

for all 1i.

Proof: Denote the ith socle of F[G] by S.1 and recall that

S. EF[G]/JI, as F[G] 1is self-dual. Now, if V is a vector space
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over F, denote the dimension of V by d(V). Then

(26) acestyesitly < qeepsttly - ae/esh

= ace/path By - ace/er )
Sy - ace/pat, FlanC

- acepstl Fral )

by the Nakayama relations

- G .G
= d((p, s, %) - d(®, $))
_ G
= d((p, 5, ,/5)")

as P is projective
- acatrttl, eH6)

from which (25) follows.

We proceed to reveal some of the most important properties of
the general trace map, and leave in some cases the task of translating

these results to the special and dual trace maps as an exercise.

Lemma 1.6. Let K <L <G, and let g e G. Then

. G_ .G L -G _ =G =L
i) TrK = TrL D TrK and TrK —'TrL ° TrK.
Let M €& M _(G). Then
i) Tr}(;’(MK) c TrE(ML).
_ _ g
iii) TrG(MH) = TrG (MH ) forall H <G, g€ G.
H us —

Proof: By definition.

Next we recall the Mackey decomposition of a module: Let

H, K < G, and let NEMQ(K). Then
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4G - +H
(27) N e (Neg), ;)

g, K\G/H K 'AH
as O[H]-modules, where K \G/H denotes an arbitrary transversal of
double (K, H)-cosets.

Similarly, we have a Mackey decomposition of the trace map.

Theorem 1.7 (Mackey decomposition). Let H, K <G and let

N € MQ(K). Then

) Tr _1H (x ® gi)
g; KginH

15

g;€ K\G/H

(28) Trg(x) =

for all x € NK.

A similar result of course holds for the interior trace map if

N € MQ(G).

Proof: Just as the Mackey decomposition for modules, this

follows from the fact that if G = U KgiH, and KgiH = UKb,,,
g, €K\G/H i
disjoint union, then {bij} is a right transversal of K in G. On the

other hand if {hij} is a right transversal of gi_lKgi AH in H, then

KgiH :UKgihij’ disjoint union.

Since it is always dear if one should use the exterior or the
interior trace map, we have as mentioned earlier chosen in the following

to use the notation Tr in both cases, unless both occur together.

The assumptions in the following result may seem a little

artificial, but have been chosen in order to avoid repetitions.

Theorem 1.8. Let A, B, C EMO)(G), and let

*: A xB — C bean 0O-linear map such that whenever L < G and
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b AL, U BL, then the maps B —> C and A —» C defined by

* ¢ are O[L]-homomorphisms.

Let H, K <G and choose a € AX, b € BY. Then

b —> ¢*b and a —= a

E Tr G (agi * b)

(29) Trg(a) < Trg(b) = 5
g KginH

g€ K\G/H

Proof: Our general condition yields that

G

(o) = Trg(Trg(a) * b)

(30) Trg(a) * Tr

which by ii) equals

(31) Trfl( ¥ Tr _1H (ag,) * b)
g €K\G/H Ei Kg;nH
= Trg( N Tr _IH (ag; * b))
g eK\NG/H & Rgnt

again because of our convenient assumption.

Notation: Let H <G, and let M EM@(G)' We then set

= Tr (M ). More generally, if o s any family of subgroups of

G T

_ G
(32) M.)r. = L U
veW

M

and Mw"’G = MG/MS‘.‘.

As the first application of Mackey decomposition, we now state

Corollary 1.9. Let M €M _(G), andlet V, H < G. Set

(33) X={vipv

v ¢HY, M) = (V' aH|y ¢H}
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Then

i) Trg(m) = Tr},\i(m) mod M}){g for m e MV. In particular,
i) M? e M+ M
v -V )0
i) M8 e M

x = %

Thus we have the following diagram

(34)

M

G
*

Proof:

i) follows directly from Mackey decomposition, and ii)
follows from i).

Finally, if W € X

and g e G
a subgroup of some element of ){) .

arbitrary, w8 nH is

Thus Mackey decomposition implies
iii) as well.

Corollary 1.10. Let A € MG(G) be a ring. Assume further-
more the assumption of Theorem 1.8 is satisfied for A =B = C

and the
multiplicative structure of A. Then

i) AG is an ideal in AG
W

for any family W' of subgroups
of G.
ii) With the notation of Corollary 1.9,
G G _ G G
(35) TrH(a)TrH(b) = TrH(ab) mod Ax
for all

a, b eAs.
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Proof: i) follows directly from the definition, actually.

ii) Set a = Trl{;(a), b = TrS(B), where a, B € AV. Then

(36) Trg(a)TrE{(b) = Troa) Tri(8)
= 1 e 0 (g
lvg. av
by (29), g €V\G/V B g n
= 7 Tr 71G (agiB) mod AGx
geV\H/V B V& OV
= Trg( ) Tr _IH (ag;8)) mod A;
g € VNH/V & Ve, oV

_ G G
= TrH(ab) mod Ax

again by (29).

Example 3: If M €&M_(G), then A = (M, M)G satisfies

the assumption of Theorem 1.7, and thus A is an ideal in A. Hence

Trg induces a ring homomorphism on A’6 *7, a fact we will take great

QxO

advantage of later. But at this stage it seems natural first to investigate

how one ensures that AG is a proper ideal in AG. This will be

%

analyzed in the following sections.

2. Relative projectivity.

Before we continue, there are a few points we have to make
in view of Ch. I, 14. Namely, the concepts of projective cover and
injective hull may be extended from the original in Ch. I, 10. Let

(F, R, S) be a p-modular system, and let M € MR(G). In view of

Lemma I.14.4, we may then define the projective cover PM € MR(G) of

M as the lift of the projective F[Gl-cover of M/Mm. We then define
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M by

(1) 0 oM P M 0

and observe that QM 1is an R-pure submodule of PM’ as M is R-
free. It follows that OM/QMm = Q(M/Mm). Likewise, we may define the

(R-)injective hull IM of M (cf. Theorem 1.14.10 and its proof) and

define UM by

(2) 0 M I UM —— 0

Again, M 1is an R-pure submodule of IM’ and thus UM 1is R-free.
It immediately follows, that Lemma I.10.2 through I.10.6 holds

for elements in MR(G), and in particular, we will talk about Schanuel's

lemma for modules in this category.

We now introduce the concept of relative projectivity.

Let © be a principal ideal domain such that Krull-Schmidt
holds for modules in MO(H) for all H <G, If M EMG(G) and X is
isomorphic to a direct summand of M, we write X!M.

Definition 2.1. Let MGMQ(G) and let H < G. Then M

is called H-projective, or projective relative to H, if there exists

N €M (H) with M|NTC,

For A, B €M (G), we recall that (A, B)J = Tryj((a, B)')
c (A, B)G. This is the subspace of H-projective homomorphisms.

Similarly, if H is a family of subgroups, M is called W'-

G

projective if M is U-projective for some U € W', and (A, B)W is

called the space of w~projective homomorphisms.

Lemma 2.2. Let MGMQ(G), and let H < G. Then
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i) M is 1l-projective if and only if M is projective.

ii) Let M be H-projective. Then M is Hg~projective as
well for all ge& G.

iii) If M‘N¢G for some N & MO(H) and N is K-projective
for some K < H, then M is K-projective as well.

iv) Let K < H. If M is K-projective, then M is H-
projective. ¢

v) M is H-projective if and only if M* is H-projective.

vi) Assume © 1is a p-adic ring or a field. Then M is H-

projective if and only if 02OM 1is H-projective.

Proof: 1) - v) are easy exercises.
vi) is a straightforward exercise, if one remembers that

is additive and uses Lemma 1.10.3 & 5.

Let A, B GMO(G), and let H < G. Recall
(A, B)i = (A, B)®  forall geG, andthat (A, B)J c (A, B)Y if
HE H = K
H <K, as we saw in Lemma 1.5.
G
We now have the following connection between relatively
projective modules and relatively projective homomorphisms.

The next result is well-known and appears in Green (1974)

in the special case where H = 1.

Theorem 2.3. With the notation above, let o € (A, B)G.
Then the following are equivalent:

D oae s, B

i1) o factors through an H-projective module. In other
words, there exists an H-projective module M € MO(G) and

homomorphisms 11)1, 11)2 such that
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commutes.

A
iii) a factors through (B‘,(H)'G

Proof: That i) implies iii) follows from 1, (7). Indeed, if

)fG = 2 B ® g. and = TrG(Y) for vy € (A, B)H,
+H i H
gicH\G

then l,Ul 1= Trg(\/) € (A, M)G, and if we define wZ = ¢, where as

M= By
earlier c© € (M, B)G is defined by E(in ® gi) = ingi, we see that
(3) holds.

Obviously, iii) implies ii).

Finally, given (3), where M is H-projective, let N € M (H)

with M\NfG. Then (3) may be replaced by

(4) ¥ ¥

By the Nakayama relations, let ¢, € (A, N)H with Trg(d)l) = wl and

@2 € (N, B)H with Frg(tpz) = Lpz. Then, for any a € A,

(5) aa) =0, o U (a) = Fro(e,) o Tro(e))(a)
G ° -1
= [Fr (¢,)]1( ) ¢,(ag, ) ® g.)
H "2 giEH\G 1 i i

-1
7 (¢, o ¢ (ag, g,
giGH\G 2 1 i i

G
[Tr(9, ° o)1)
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We may now characterize H-projectivity in a number of ways:

Let M€ M (G) be arbitrary. Then we always have the

surjective homomorphism ¢ : M‘rG —> M defined by

(6) e I m @g)=Img
gie H\G
. . . e - . +G
Likewise, there is always an injective homomorphism v : M — M
defined by
-1
(7N v(m) = 7 mg,~ ® g

gieH\G

Corollary 2.4. With the notation above, the following are

equivalent:
i) M is H-projective
. +G
i) MM )
iii) € splits
iv) v splits
v) Any short exact sequence
(8) 0+X>Y>M>0 resp. 0 >rM~>X~>Y >0

splits if and only if its restriction to H splits
vi) M, 0% =, M

vii) There exists v & (M, M)H such that Trg(y) is the

identity map of M.

Proof: First of all iii) and iv) are equivalent through
* *
duality, as v : M — (M )fG is the same as the induced map
* * e
e M — (M) followed by the isomorphism of 1, (11).

Also, vi) is equivalent to vii) as (M, M)g is an ideal in
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M, wY.

Obviously, iii) implies ii), and ii) implies i) by definition.
Next, if M 1is H-projective, the identity map of M certainly factors
through an H-projective module, and thus vii) holds by Theorem 2.3.
Next, vii) implies that ¢ o TrG(Y) is the identity of M as well, and

H

thus the exact sequence

+G

(10) 0 —> Ker ¢ —> (M, ) —> M — 0

+H

splits. Hence vii) implies iii). Similarly, if vii) holds and the first
sequence of (8) has the property that its restriction to H splits (by
duality we only have to deal with one of them), then vy of vii) may be

factored through Y and thus the identity of M may be factored

‘R’
through Y by vii) and v) holds. Finally, v) yields that (10) splits,

and our tour is complete.

Remark: vi) above is usually known as D. G. Higman's
Criterion for projectivity (Higman (1954)). Parts of the corollary go

back to this paper and Gaschiitz (1952).

Corollary 2.5. Let (F, R, S) be a p-modular system, and
let C be F or R.
Let Q € SylP(G), and let M EMm(G). Then M is Q-

projective.

Proof: We simply observe that W%T IdM is well defined

in (M, M)G and use vi) of Corollary 2.4.
Corollary 2.6. Let M, N € MF(G), F as above. Then

(11) Ext1 LG

FIG] (M, N) = (0M, N)
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Proof: Let d)l : OM —> PM be the embedding, where P
is the projective cover of M, and Q is the Heller operator. By

definition (Ch. I, Sec. 10),

o, &) = o, e @ L O

(12) Ext M

1

F[G]
N . . G

where ¢>1(w) =V 9 Thus ¥ o 9 € (M, N) factors through PM’

whence is projective by Theorem 2.3. Conversely, that any projective

map in fact factors through P follows from the following exercise in

M

homological algebra:

Lemma 2.7. Same notation as in Corollary 2.5. Let
A, B & MG(G)' and let x €& (A, B)G. Then the following are equivalent:
D ooea, B,
i1) » may be factored through the injective hull of A.

iii) u may be factored through the projective cover of B.

Proof: i) implies ii): Let =~ €& (A, B)f. By Theorem 2.3,

there exists a projective module P such that

A B
(13) - \
P
commutes. Let I denote the (Z-) injective hull of A, and

A

In : A — IA the embedding. As P is injective, there exists

©

:IA‘> P such that L]:®°In
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—
>

(14)

©

o €

and thus a = (wz ° ¢) o In factors through IA.
i) implies iii): Let PB denote the projective cover of B,
and Pr : PB —> B the surjection. As P is projective, there exists

b : P —> Py such that w2=Pr°¢. Hence o = Pr o (¢ O\Ul)

factors

(15)

through PB.
Finally, ii) and iii) obviously both imply i), as an injective

0[G]-module is projective.
For later use, we also mention

Corollary 2.8. Let A, B € MF(G), F as above, be pro-

jective-free, and let J denote the radical of F[G]. Let ¢ € (A, B)?.

Then Soc(A) € Ker ¢ and ¢(A) ¢ BJ.

In particular (A, B)? 0 if A or B is semisimple.
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Proof: By additivity, it suffices to consider the case where
A and B are indecomposable and also to prove that Soc(A) ¢ Ker ¢
since then duality and Theorem 2.3 yield that ¢(A) ¢ BJ is satisfied
too. Now using the notation of Lemma 2.7, ¢ may be factored through
I,. Moreover, if some simple component E of Soc(A) is not in the
kernel of ¢, some direct summand of IA isomorphic to the injective

hull IE of E intersects Ker(wch) trivially. Thus IE is a direct

summand of B, a contradiction.

Corollary 2.9. Same notation as in Corollary 2.5. Let

A, Be MR(G) and set A = A/A7W, B = B/Bw. Then
(16) (A, E)f: ((A, B)?Jf , 3)%n/a, )%+

i.e., a projective map from a liftable module into a liftable module is

liftable.
In particular, if S 1is a splitting field of S[G] and X

resp. Xp is the character of A ®R S resp. B ®R S, then
(17) dim (&, B)Y < (x,) %)

o 1 - “*A” *B'G
and
(18) dim (&, B)C < (4, x0 - 1

P 1= A A

if A is not projective. Thus (M, M)Cl; = 0 for any non-projective

F[{G]-module M, which lifts to a module with an irreducible character.

Proof: Let o € (A, §)§;, and let P be a projective

R[G]-module such that o factors through Jl € (A, PT)G and

V,€ (P, B)°, where P =P/Pn. Then V) lifts to y € (A, )% and
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U, to u, € (P, B)Y by Theorem I.14.7. Thus & lifts to

G
a= g, o py € (A, B),

and (16) follows. Now (17) follows from
Lemma I.14.5.
Moreover, if A = B is not projective, the identity of A

does not belong to (A, A)G and thus dimF(X, ;A_:)(f < (XA’ XA) by

1
(16).

Remark: As an illustration of this remarkable result, see

Example 2 of Section 13.

We end this section with the following warning if one deals

with R-modules rather than F-modules.

Lemma 2.10., Same notation as above. Let A, B € MR(G),

H,G

and let H be any subgroup of G. Then (A, B) is a torsion

module, or in other words, rankR((A, B)G) = rankR((A, B)H’G).

Proof: It suffices to consider the case H = 1 by Lemma 1.6.

Choose n such that |G| = um', where u is a unit in R. Then
G
for any ¢ € (A, B) ,
-1 _ _], ' _ .n
(19) Lw e =u [Gle= 7o
g€ G

which therefore is an element of (A, B)(l:" Thus (A, B)Gwn c (A, B)(f,

and we are done.

We end this section with mentioning the following remarkable

result without proof:

Theorem 2.11 (Green (1959b). Same notation as above. Let

E be a simple F[G]-module such that Ext (E, E) = 0. Then E

2
F[G]
is liftable.
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Proof: Using cohomology one can lift E to R[G]/(vl) for

all i and then take the inverse limit.

3. Vertices and sources.

We now pursue the idea of relative projectivity. Our tool is
Mackey decomposition, and the basic ideas go back to Green (1959a) and

(1962a).

Again we let O be a principal ideal domain ring such that
Krull-Schmidt holds for modules in MG(H) for all H < G.

Observe that if H < G and N € M_(H), then always

Lemma 3.1. Let N € M.(H), and assume N is V-projective

+G

for some V <H., Let (N )JrH = N @ N'. Then any indecomposable

direct summand Ni of N' is v n H-projective for some v ¢ H.

Proof: By assumption, there exists L € M.(V) such that

AH 4G .
L *~ N & K for some KEMQ(H). Let (K )J(H * K ® K'. Thus

G

(1) (L )$Hf((N®K)A‘G)¢H:N®N‘®K®K'

On the other hand, by Mackey decomposition,

hel +H
(2) wh, = e wev) )
YiGV\G/H h/.l VY.lnH
If we choose our notation so that Y, € H, then
. +H _ _\tH - *H oL
(3) ((L®’l)¢VnH) —(L®\1) L N&®K ,

so by Krull-Schmidt, each indecomposable direct summand of N' is
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+H

isomorphic to a direct summand of some ((L & Yi) ), where

Y.
¥4 ¢ H, whenceis V Yn H-projective.

wi' lei nH

Definition 3.2. Let M € Me(G) be indecomposable and set
Pr(M) = {H < G|M is H-projective}. The minimal elements (by order)

in Pr(M) are called the vertices of M.

We now have the following characterization of the vertices of

Theorem 3.3. Let M e MO(G) be indecomposable. Let V
be a vertex of M. Then

i) Let H < G, and let M, = @ N,, where H, is in-
- H P i

decomposable. Let Vi be a vertex of Mi' Then Vi

<V,
G

Assume furthermore that H € Pr(M). Then

ii) V < H. In particular, the vertices of M are uniquely
determined up to conjugacy in G.

iii) Assume V < H. With the notation of i), there exists an

i such that Vi

V.
0 0

T

A
Proof: Let LEMO(V) such that M\L'G. By Mackey

decomposition,

) wh,, - @ (wewy

3 )
Y, €V \G/H ! w;lVyinH

As M¢H| (LfG)H‘l, (4) yields that any indecomposable direct summand

Ni of M%H is a direct summand of a module induced from Yj_]'VYj nH

for some j. Hence i) follows from ii).

. 4
If furthermore M 1is H-projective, M](MH_I) G and thus

M\NifG for some 1i. Hence “(]._IVyJ. nH € Pr(M) by what we saw

. Y.
above. Now minimality of V forces V YaH =V "', and i) follows.
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Finally, as M\(MJ’V)‘rG, there exists an indecomposable

direct summand U of MJrV with vertex V, by choice of V and

Lemma 2.2 iii), such that MlUK}. In particular, if V < H, there
exists an i

such that U[Ni But then V < Vi by ii), and thus

0 0+V a ip
V = V. in fact, by 1).
H I
Remark: This result will be improved later. Indeed, it turns
out that io may be chosen so in iii) that moreover M\Ni G (Burry
0
(1979)).

This result now allows us to add the following supplement to

Lemma 3.1.

Lemma 3.4. Let N € M. (H) and assume N is V-projective

for some V < H. Let N‘G = & M.1 with Mi indecomposable. Then
i
there exists an io such that
NG
DNM
0 >

ii) Mi is V an—projective for some Y; ¢ H, for all i# ige

Proof: Let Wi < V be a vertex of Mi’ in view of Lemma

3.1 and Theorem 3.3. Furthermore, Lemma 3.1 asserts the existence of

ar; i, such that N;Mioﬂ_l, while any component of MNH’ 14 i, is
v'na H-projective for some <. € H. But then there exists a jO and
h‘ Y

hj € H such that Wi ‘o <V 10 N H by Theorem 3.3, from which
0
the statement follows.

Example 1. It immediately follows from Lemmas 2.2 v) and vi),

*
that if M € M\,B(G) is indecomposable with V as vertex, then M , QM

(and »M) all have V as vertex as well.

Example 2. Let (F, R, S) be a p-modular system and let
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© equal F or R. Let MGMO(G) be indecomposable. Then a

vertex of M is a p-group by Corollary 2.5.

Example 3. Same notation as above. Let Q be a p-group.
Then the trivial O[Q]-module 1 has vertex Q.

+Q

Indeed by Section 1, Example 2, if V <@, (I is inde-

W)

composable and thus has 1 as a direct summand if and only if V = Q.

Lemma 3.5. Same notation as above. Let M be an inde-
composable ©O[G]-module, and let H denote the kernel of M. Let V

be a vertex (which is a p-group by Example 1). Then VNnHE Sy‘lp(H) .

Proof: Let Q € SYIP(H) . Then Q acts trivially on M¢Q’
and thus any direct summand of M¢Q has vertex €. Hence Qg <V
for some g € G by Theorem 3.3 and the statement follows as H is

normal in G.

The next result, which provides a more conceptual proof and
a significant generalization of Proposition 1.15.8 suggests how useful

vertices may be.

Proposition 3.6. Let S be a splitting field of S[G] and
let M be an indecomposable R[G|-module. Denote the character of

M ®R S by ¥, and let V be a vertex of V.,

Let x € G and assume the p-part of x (see Section 1, 13)

is not conjugate to an element of V. Then x(x) = 0.

Proof: Let R denote an extension of R which contains an
ord(x)'th root of unity. Then any direct summand of M @R R is
obviously V-projective, and it therefore suffices to prove the statement

for the case R = R.
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Let H = <x> and K = <xp > . By assumption,
v aH <K for all g€ G, and as S is a splitting field of H,
Theorem 3.3 therefore allows us to assume that H = G. Let L be an
indecomposable R[V x K]-module such that M\L‘rH. The statement
certainly follows if L“—I is indecomposable. This in turn follows from

the proof of the following

Lemma 3.7. Let H = <x> with Sylow p-subgroup Q
and complement T. Let (F, R, S) be a p-modular system and
assume S is a splitting field of S[H]. Then

i) Any indecomposable F[H]-module is uniserial.

ii) An R[H]-module M is indecomposable if and only if
M/M(7) is indecomposable.

T|
Proof: Let 1 = Z e be the primitive idempotent decom-
i=1

position of 1 in S[T]. Then eie R[T] for all i, as (p, |T]) = 1.

Denote the corresponding idempotent in F[T] by gi' Let N be an

indecomposable F[Q]-module. Then N is uniserial as we saw in the

example of Section I, 8. Moreover WH decomposes into

IT|
KAH - @ (Nﬂ-i)—
i=1 ’
as an F[H]-module, and (NfngiNQ =N as H 1is cyclic. Thus

(NTH)% is uniserial by Corollary 1.9.6. As any F[{H]-module is
F[Q]-projective, 1) follows.

To see ii), assume first that T = 1. Then the statement
immediately follows from the Jordan Normal Form. But then the general

statement follows by the argument above, using 1 = Eei.

A
To finish the proof above, it suffices to prove that (L‘l—I

Do
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AV
is indecomposable. Let N be an R[V]-module such that LN XT.
AQ A 4
Then (L%H)Hg],((N‘Q) H)¢Q' But N Q is indecomposable by Example 1
) JAH _ , 4H

of Section 1. Thus L = (N )e.1 by the argument above and

+H )
(L >¢Q N ™.

Remark. What we have just proved is very important for the
proof of Brauer's Second Main Theorem. It is actually a special case of

a more general result due to Green (see Theorem 11.10),

It is possible to prove the results of Lemmas 3.1 through 3.5
in a different way, namely via Corollary 1.9, in view of Theorem 2.3.

Let us explain this in more detail:

Lemma 3.8. Let M be an Z[G]l-module, and let X be an
indecomposable direct summand. Then X is H-projective for some
H < G if and only if the corresponding idempotent of (M, M)G is

H-projective.

Proof: Clear by Theorem 2.3, as any isomorphism X — X

will factor through X, only.

But then the next question is: If e €& (M, M)G is a
primitive idempotent, how do we prove that e € (M, M)S for some

clement U € X¥’? This is precisely the situation we deal with in the

following useful

Lemma 3.9 (Rosenberg's lemma) (see Rosenberg (1961)). Let

A be a ring and e € A an idempotent such that eAe 1is a local ring.
Assume furthermore that e € Eo(i, where D(i is an ideal in A. Then

there exists an iO such that e ¢ oci .
0

Proof: Multiplying from left and right by e, we may as well
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assume that A = eAe. Thus A is local, and not all oti's are con-

tained in the maximal ideal of A. Hence m’i = A for some i
0

0

Remark: We have chosen the basic assumption of the lemma
so that the proof is as obvious as possible. Observe that if (F, R, S)
is a p-modular system and A is a finite dimensional F-algebra or

R-order, the assumption above holds for A, as we saw in Ch. I,

Sec. 5 & 11.

Let us demonstrate the effectiveness of the strategy just
suggested by proving the following remarkable result on vertices. It
was obtained recently by Burry & Carlson (1982) and independently by

Puig (1981).

Theorem 3.10. Let (F, R, S) be a p-modular system, and

choose © equal F or R. Let V <G and N.(V) <H <G. Let

G

M e MQ(G) be indecomposable and assume M has an indecomposable

+H

direct summand with V as vertex. Then M has V as vertex.

Proof: Let N‘MH-I be indecomposable with vertex V and
e € (M, M)I\-/I. be the corresponding idempotent. Let o € (M, M)V such

that e = TrH(a) and set ¢ = TrG(cx). Then € = e mod (M, M)H
\% \% )0

by
Corollary 1.9 i), where )0 ={v'n H|y ¢ H}. Moreover,

e ¥ 0 mod (M, M)% by Lemma 3.4 and Rosenberg's Lemma, as by
assumption V 1is a vertex of N and V ¢ )0 . But (M, M)G, and

hence
(5) MY = o, S, M)’; M, WY

is a local ring. As ¢ € (M, M)G is an idempotent, € is invertible,

and thus
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(6) o, &= o e e v, w§

as (M, M)g is an ideal in (M, M)G. Hence M 1is V-projective by

Lemma 3.8, and the theorem follows from Theorem 3.3 i).
We end this section with

Definition 3.11. Let M € M_.(G) be indecomposable with V
as vertex. Then an indecomposable module U € M (V) with M\U tG is
o

called a source of M.

Remark: If U is a source of M, then sois U ® g for
any g € NG(V), obviously, and with V as vertex. In general
U e g 1is a source of M and vE as vertex, for any g € G. We

shall prove the converse:

Theorem 3.12 (Green). Let M € M, (G) be indecomposable
~

with V as vertex, and let M be H-projective for some H < G. Then

i) If U, U_e MQ(V) are both sources of M, then

10 72
Cl ~ UZ ® g for some g € NG(V)-
ii) Let N be any indecomposable component of M with

+H

vertex W E‘ V. Then there exists an indecomposable module in M (W)

1

which is a common source for M and N.

Proof: Let U € M_ (V) be indecomposable such that
Frool o

U!M‘V and MIL'TG. Then Mackey decomposition yields a v, € G such
Y
that
. . - Vv
N vl e v )

W.oVY. AV
1 1

Y.
2. As the vertex of U is V, this forces V !

It
<

1l
—
N

for i
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Consequently, U = Ui ® ¥, as the latter is indecomposable for 1 =1, 2
and i) follows.
Finally, Mackey decomposition proves that

1 )TH for some Y. Hence Y_lVY cH, and U1® Y

Ni(U @)
+Y "VynH

is a common source.

*
Example 3. With reference to Example 1, M , &M and UM
*
has U, QU and ©OU resp. as sources, with the notation of Definition

3.11.

It is natural at this stage to ask about connections between
relative projectivity of an indecomposable R[G]-module M and the
corresponding F[G]-module M = M/M(w), where (F, R, S) is a p-
modular system and (m) is the maximal ideal of R. The answer is

nothing much, except the obvious.

Lemma 3.13. Same notation as above. Let H < G. Then
D) Let NeM(H). Then N =N'C.
ii) Let M€ M_.(G) be indecomposable. Assume M is H-

projective. Then so is M.
Proof: 1) is by definition, and ii) follows from 1i).

Remark: The coverse of ii) above is not always true. For

an example, see Feit (1982), p. 111.

This has the following straightforward but useful application

to relative projective homomorphisms.

Lemma 3.14. Let A, B € MR(G), and set A = A/Amw,

B =B/Bn. For ¢ € (A, B)G, the induced map in (A, ET)G is
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denoted by ¢. Let ' be any family of subgroups of G. Then

G

(8) ((A+B)y,

+ (4, B9 1A, B e &, Bi

Proof: By Theorem 2.3 and Lemma 3.14.

Remark: As we saw in Corollary 2.9, equality actually holds

in (8) if W= {1}.

4. Green Correspondence.

We are now able to present another major result on restriction

and induction of modules, namely Green Correspondence.

We continue to let © be a principal ideal domain such that
Krull-Schmidt holds for modules in M@(H) for all H < G. Moreover,
we let V be a fixed subgroup of G. We shall be concerned with inde-
composable 0[G]-modules with V as vertex. We also consider some
arbitrary, but fixed H > NG(V), and introduce the following standard

notation

®
I
-
=
N

<Glw<vBnvV, geG\H}
(1)
<G|Ww <Vv®B AH, ge G\H}

S
I

.
=
A

Theorem 4.1 (Green Correspondence) (Green (1964)). There
is a one-to-one correspondence between indecomposable modules in
MO(G) with V as vertex and indecomposable modules in MO(H) with
V as vertex, which is characterized as follows:

i) Let M € MG(G) be indecomposable with V as vertex.
Then M has a unique indecomposable direct summand f(M) with V

vH

as vertex. Furthermore,
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2) M+H = f(M) & (éiB Ni)

‘where the vertices of N.1 all lie in Na, for all i.
ii) Let N & MG(H) be indecomposable with V as vertex.
Then NﬁG has a unique indecomposable direct summand g(N) with V

25 vertex. Furthermore

(3) N'Ce g @ (@M

1

where Mi has a vertex in 3%, for all i.

{ii) In particular, g(f(M)) =M and f{f(g(N)) = N.

Proof: i) Let M be given as in i). We first claim there
exists N‘MJ,H indecomposable with vertex V such that M\NﬁG.
Indeed, if U € MG(V) is a source of M, there exists an indecomposable
direct summand N of ¢ such that M‘NﬁH. It immediately follows
)

that N has V as vertex. Moreover M“_I\(N$ has an inde-

vH
composable direct summand with V as vertex, by Theorem 3.3 iii).
But only N will do by Lemma 3.1. Now all of i) follows from Lemma
3.1,

ii) Given N as in ii), choose M|NfG indecomposable such

+G
that N|Mm. Let N

=M 6 (& Mi)' where Mi is indecomposable for
all i, As M 1is V-projective, then, Lemma 3.1 and Theorem 3.3 i)

yield that in fact V 1is a vertex of M. Now all of ii) follows from

Lemma 3.4.

Remark: Notice that elements in ) are all properly con-
tained in V. In particular, they have order less than the order V.
This is not true for elements of 7)9, although of course V q m For

this reason, we point out that
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Lemma 4.2. Same notation as in Theorem 4.1. Consider
g|y8 & ;
{V®]V5 <H} andlet {V °lj € J} be a set of representatives of the
H-orbits of this set. Then M%H has an indecomposable direct summand

Nj with V ) as vertex. In particular, M&H has at least |J| non-

isomorphic direct summands.

Proof: As M has VvE as vertex for all vE <H, M‘H has

an indecomposable direct summand with vE as vertex by Theorem 3.3 iii).
g.
Let Nj be a direct summand of M'H with vertex V J, As their
Y

vertices are not H-conjugate, they cannot be isomorphic by Theorem

3.3 1),

In Ch. III, Sec. 8, we shall need the following consequence
of Green Correspondence (see Alperin (1981)). By a p-local :[G]-
module we mean a direct sum of modules induced from subgroups of the

form NG(V), where V # 1 is a p-group.

Lemma 4.3. Let M € M. (G). Then there exists p-local
O[G]-modules L1 and LZ’ and projective ~[G]-modules Pl and PZ
such that M & L, @ P1 = L2 @B PZ'

Proof: We may assume that M 1is indecomposable and non-
projective. Let V be a vertex of M and f(M) the Green Corre-
spondent of M in NG(V). Then f(M)AG =M @ M', where M' is a

sum of modules with smaller vertices. So by induction, the result holds

for M'. As f(M)TG is p-local, we are done.
For completeness, we also notice:

Lemma 4.4. Assume we are in the situation of Theorem 4.1.
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Then
i) Green Correspondence commutes with taking dual modules.

i1) Green Correspondence commutes with the Heller operators.
Proof: Easy exercise. Use Theorem I.6.4 for i).

Remark: Notice that our proof of Green Correspondence is
based on Theorem 3.3 and Lemmas 3.1 & 4, and one more observation,

which is easy to prove if N_(V) < H, namely the fact mentioned in the

of

remark following the proof of Theorem 3.3. As promised there, we now
prove that this holds without the restriction that NG(V) be contained

in H.

Theorem 1.5 (Burry (1979)). Let M€ M_ (G) be inde-
composable with V as a vertex and let V < H. Then there exists
N € M_(H) indecomposable with V as vertex as well such that

3 !

i) NJM&H'

A
i) MIN'G,

Proof: Let K = NG(V). Let f](M) be the Green Corre-

spondent of M in M“(. By Corollary 2.4 ii) let L,|f1(M)“<,\H be

indecomposable with fl(M)|L¢K. Then L has V as a vertex by

Theorem 3.3 i), as V 2 K. Let gZ(L) be the Green Correspondent of

A

L in L‘H. We now claim that N = gZ(L) will do in the theorem.

Indeed, N has V as vertex, by choice. Also, M\L$G by Green
A
Correspondence. Moreover, L'H =N ® (& Xi) where each Xi has
i
vertex properly contained in V, again by Green Correspondence. Thus

ii) holds.

Moreover, L\ again by choice. Hence there exists

Mk qn’

an indecomposable direct summand N, of M such that L|N

1 vH IYH nK”
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As M and L both have V as vertex, Theorem 3.3 i) asserts that
Nl has V as vertex, too. Hence Nl = N by Green Correspondence,
and i) holds as well.

Finally, Theorem 3.10 gives the following improvement of Green

Correspondence:

Theorem 4.6 (Burry & Carlson (1982)). Let A€ M@(G) be
indecomposable with V as vertex. Let NG(V) < H, and let f(A) be
the Green Correspondent of A in A+H'

Let B & MO(G) be arbitrary. Then the following are
equivalent:

i) A|B

ii) f(A)[BH_I.
Proof: Obvious.

Remark: Needless to say, Green Correspondence has a
number of applications, as we will see when we proceed. However, it
should also be pointed out what Green Correspondence does not do. For
instance, it does not tell us if the restriction or induction of a module
decomposes at all. Naturally we would like to say something about the
Green Correspondents of the simple F[G]-modules. But if G is a
group with a (B, N)-pair and B = U.H where U € Sylp(G) and
char F = p, a class of groups which has been examined in great detail
(and include all groups of Lie type) starting with Curtis (1965) & (1970)
and Richen (1969), it turns out that the restriction of any simple F[G]-
module to B is indecomposable. Nevertheless, the restrictions have a
remarkable property. Namely, the socle and the head are both 1-

dimensional. However, if we then turn to other simple groups, or other
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characteristics for groups with a (B, N)-pair, the Green Correspondents
of the simple modules may be rather small, but they do not seem to have
particularly nice or remarkable properties. For some non-trivial examples,
see Erdmann (1977a) and (1979), Landrock & Michler (1978) and (1980)

and Schneider (1983a).

5. Relative projective homomorphisms.

Inspired by the success of the previous section we now concen-
trate on relatively projective homomorphisms. However, as we discovered
in Section 1, it is easier first to prove the results for the trace map
between modules.

In the following we only require @ to be a principal ideal

domain. For X € G, we set [X] = z X.
x & X
Lemma 5.1, Let V <H <G, andlet N &€ M@(H). Then
G, .H G, G
(1) Tr(ND) € (N0
. G.G_ .. G\G
In particular, (N.H) = (I\MH)H'
H ~ v
Proof: Let a e NV' Then a = a[V\H] for some o €N,

where as usual V\H denotes an arbitrary right transversal of V in

H. Thus

(2) Trga) = I alviHl @ g
gieH\G

a[V\NH] ® [H\G]

a® [VA\G]

which belongs to (N#+ )8.

0
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This has the following important consequence. For H <G

and W' a family of subgroups of G, set
(3) N nH = {UB nH|U € W'}

Lemma 5.2. With the notation above,

H

(4) N'}('nGH

- o GG G, G
= (NIH),“,— (N+H)wnGH R

where Trg provides the isomorphism.

Proof: Let UE)-/’, g e G. Set V:UgnH.
holds for this choice of V, and thus
H G G
N N
(5) Tr( ')f‘nGH) c ( *H)mnGH
Conversel let x = Za ® € (N *G)G Then, by Macke
¥ 17 B € Wiy PRy ¥

sition, as x € (N‘PE)U,

g.
¢ 7 a, ® g, [H ) n UNUDIUNG]
%GH\GNJ )

gt gt
(Ja,@ [HAU Y \u) lg[UNG]
j

(6)

»
1l

-1 1 -1
g 8 g
(2%®[HnU] Nu ! pu) Na)
j

as Xg = x,

-1

£
Zaj ® [H nH * \G]
]

-1

g.
(Ja;@ [HnU Y \HDIHN\G]
i

f

which belongs to T G H

rH(N)(, nGH), and (4) follows.

Then (1)

decompo-
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Corollary 5.3. Let MEMG)(G) and assume M is H-

projective. Then

G

G _
(7 Mm—MwnGH

+G

Proof: This follows from (4), as (M, .,) =M @® W for

vH
some W € M_(G) by assumption.

For completeness, and in view of the heading of this section,

we state Lemma 5.2 for homomorphisms.

Corollary 5.4 (Knorr (1979)). Let H <G, and let
M e MQ(G), N €& M, (H). Let H be any family of subgroups of G.
Then

D Let ¢ e, M. Then Tra(e) e (M, M is W-
projective if and only if ¢ is W’ ﬂGH—projective.

i) Let ¢ € (N, M. Then Fro(e) e (x5, M% is w-

projective if and only if ¢ is W' n GH—projective.

Furthermore we may now prove the following refinement of

Corollary 1.9.

Theorem 5.5. Assume Krull-Schmidt holds for elements in

.

MG(H) for all H < G. Let M &M_(G), andlet V <G,

NG(V) <H < G. Define
(8) X ={ViAav|y ¢H}, W= (V' aH|y ¢ H}

Assume moreover that M is V-projective. Then
IR VAE VSRR VI

L

ii) The Trace Map induces an 0-isomorphism
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(9) MM H L X6
iif) M(;_ - MI:’? aMC.
. . . . . H H
Proof: i) One inclusion is obvious. Moreover, M = MV
and MC = MG by Corollary 5.3. Hence the other inclusion follows from

\%
Corollary 1.9 ii).

iii) is an immediate consequence of i) and ii).

Thus it remains to prove ii). This will follow from

Lemma 5.6. Same notation as above. Let L € M_(H) be

indecomposable and V-projective such that M‘L%g. Then
H H H
i) L =L =L .
DIy “hy “lgn oH

ii) Either M is ¥ -projective, or

(10) L% H . %G

Proof: We have

H H H
(11) Lx ngnGH <y 0,V T %

as ¥ n GH = )9 =¥ n HV, while the last equality follows from
Corollary 5.3.

ii) (Note that we do not necessarily know that L’MH{)' By

assumption, LTG =M®M for some M' e MO(G)' Moreover, either

+G

M or M' is X—projective by Lemma 3.4. Also, (L =L &L,

)¢«H
where L' € MO(H) is )Q—projective by Lemma 3.1. Assume now that M

is not X -projective. Then Corollary 5.3 and Lemma 5.2 imply that

GG 4G, G, ; tGG H,, H
12 M™/M = (L L = L°/L
(12) My < @A % 0ot



and we are done by i).

Thus we moreover have that

H H
(13) MMy =L = Wt
n L7
+G.
by the remark above on (L )4'H Thus
(14) MOME = Mt

all under the assumption that M 1is not ¥ -projective. However if in

fact M is ¥ -projective then ii) of Theorem 5.5 is in fact vacuous by

Mackey decomposition. Thus Theorem 5.5 ii) always holds.
Again we state these results for homomorphisms.

Corollary 5.7. Same notation as in Theorem 5.5.

A, B € M, (G) and assume furthermore that A or B is

Then

Ha, B =, B+ (a, B

ii) The trace map induces an 0O-isomorphism
(15) (A, B)W‘H = (A, B)X’G

and if A = B, this in fact is a ring isomorphism.

G H

- G
x - (A, B)){) n(A, B) .

iii) (A, B)

Let

V-projective.

Proof: By Lemma 1.2, (A, B) 1is V-projective if A or B

is. Furthermore Corollary 1.10 asserts that the induced map of (15) in

fact is a ring isomorphism if A = B.

Using Green Correspondence, we now get the following result
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by Feit (1969). See also Green (1972).

Corollary 5.8. Same notation as above. Assume that, say B
is indecomposable with V as vertex, and let f denote Green Corre-
spondence from G to H w.r.t. V. Then the trace map induces an

9 ~isomorphism
(16) (a, B)X°C - (a, g ¥ H

(Of course, we get a similar result if instead A is assumed to have V

as vertex). If both A and B are indecomposable with V as vertex,
(7 (a, B)X:C - (s(a), )X "

and (17) is a ring isomorphism if A = B.
Proof: By Lemma 5.6.

Corollary 5.9. Same notation and assumptions as above.

Assume furthermore that % = {1}. Then
1 N 1
(18) ExtF[G] (A, B) = ExtF[H] (f(A), £(B))

Proof: Clear.

6. Tensor products.

Before we start elaborating on the results we developed so far,
we remind the reader of the following fundamental results on tensor
product of €[G], where C 1is a principal ideal domain. If
A, B e MO(G), the tensor product over 2 will simply be denoted by

A ® B. Now 2{G] actson A ® B by diagonal action, i.e.,
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(a ® b)g =ag ® bg for ae A, beB and geG. Thus A ® B

e M (G).

0

Lemma 6.1. Let A, B € M_(G). Then
*
i) B® A =~ (A, B)
* * *
ii) A ® B = (A ® B)
iii) A® B~ B® A

as 9[G]-modules.

*
Proof: i) Recall that the map &4 : B @ A — (A, B)

given by

(1) b ® a*—> o g X —> a*(x)b

b,a

and extended by linearity is an J-isomorphism. Now let g & G be

arbitrary. Then

(2) &, (0 = [agl(x)bg
bg,a g 3
a (xg T)bg

-1
o 4(xg g
b,a

il

[¢  «gl(x)
b,a

* *
ii) Again there is a natural O3-isomorphism of A ® B onto
* * * *
(A ® B) , namely, if o €A and 3 € B , the corresponding

*
element ¢Q®B € (A ® B) 1is given by

(3) Qx@,%(a ® b) = ala)B(b)

Again we must check G-linearity. Let g e G. Then
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(4) bo  5)g (3 ® D) =alag Da(bg )

_1 -
=%, g plag @ beg D)

((a ® b)g b

‘pa@B

= [0, g ggl(a ®b)

iii) is trivial.

Corollary 6.2. With the same notation, we furthermore have

that
* *
i) (A, B) = (B, A )
* * *
ii) (A, By = (B, A) = (A, B )

as 0O[G]-modules.

Proof: Clear.

Corollary 6.3. Let H

I A

G, and let M€ MO(G)' N e MO(H)'

Then

[}

(5) M® (fol) (M, ® N)*

vH
as 0O[G]-modules.
Proof: By Lemmas 1.2 and 6.1.

Corollary 6.4 (Mackey Tensor Product Decomposition). Let

K, H<G andlet A€ MO(K)' B e MQ(H). Then

(6) A+§®B+G2 ) ((A®g) g ©B )¢G

o
H g,€ K\G/H PYKT'AH 4K T'aH

Proof: Apply Corollary 6.3 twice.

In the following we let (F, R, S) be a p-modular system
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and assume for convenience that ©O is always F or R in order to

assure that Krull-Schmidt holds.

Corollary 6.5. Let A, BEMO(G). Assume A or B is
H-projective, where H < G. Then A ® B is H-projective as well.

In particular, A ® B is projective whenever A or B is.
. +G
Proof: Let by assumption A|L =, where L € MQ(H). Then

+G

(N AeBlL%eB - (LoB,.

+H
by Corollary 6.3, which proves the statement.
As an important application of this, we state

Corollary 6.6. Let A e M (G) be H-projective and let
0 +X +Y »2Z >0 be a short exact sequence of elements in MQ(G)
(in particular, Z is assumed to be O-free), whose restriction to @[H]

splits. Then
(8) 0 X®A->YQ®@A>Z®®A->0
splits.

Proof: By Corollary 6.5 and 2.4 v).

Lemma 6.7. Let Q € Sylp(G) be normal in G. Let E be

any simple F[G]-module. Let I denote the trivial F[{G]-module. Then
(9 P.=P ®E

where as usual the projective cover Py of M€ MG(G) denotes the

projective cover of M.
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Proof: By Corollary 1.9.6, Soc(PE) = Soc(P Hence

B
dimp (Pp) = \Q\dimF(E) by Proposition 1.9.3. By Corollary 6.5,
PI ® E is projective, and I ® E = E is a submodule. Hence in fact
PE‘PI ® E and (9) must hold, as the two modules have the same

dimension.
Example 1. See Example 3 of Section I.18.

Example 2. Let G = Q x K, where Q € Syl (G). For any
p
simple F[K]-module E, let E denote the inflation to G of E, as
well, This obviously describes all the simple F[G]-modules, as Q 8 G

(cf. Proposition 1.9.2). The projective cover of any such simple F[G]-

)‘bG

module E is just (E“(

Indeed in view of Lemma 6.7, it suffices to prove this for the

G +G

trivial F[G]-module I. But as ( ) has dimension }Q}, (I“()‘

Lk
is not only projective, but indecomposable as well. Finally. the

Nakayama relations assert that
(10) (1

Thus (I ) = P_.

vK

We now elaborate a little further on Lemma 6.1. Although the
following result is trivial to prove, it is so important that we call it a
theorem. Also Lemma 6.1 may be thought of as a special case of this.

Again we just need © to be a principal ideal domain.

Theorem 6.8. Let A, B, C &M, (G). Then

C

(1) (A ® B, C) = (A, B*®C)
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as 0O[Gl-modules.
Proof: This follows immediately from Lemma 6.1 i) and ii).

Corollary 6.9. Same notation as above. Then
*
(12) (aes, )%=, B 6c)t

Proof: Clear.

These results open a new way to discuss relative projectivity.

First we have

Theorem 6.10 (Landrock and Michler ( )). Same notation

as above. Let N be any family of subgroups of G. Then

G * G
13 A®B,C (A, B ®C
(13) ( ))p ( )w,

as 0[G]-modules.

Proof: Let V¥ denote the isomorphism in (11). In particular,

Y induces an isomorphism
*
(14) aes, )~ B et

for all H < G. Now, let U €X' be arbitrary, and let

¢ € (A ® B, C)S, say ¢ Trg()\), where X € (A ® B, C)U. Then

(15) w(e) =¥(Trg)) =¥( [ 2g) = [ ¥()g = Tr(¢0))
ge H\G g€ H\G

simply because ¥ is an 0O[G]-homomorphism. Hence ¥ maps

*
(A ® B, C)S into (A, B ® C)S, and as ¥ 1is an isomorphism, (14)
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follows with H? = {U} by duality. Adding over all Ue€ W, we get

(14) in general, then.

To consider applications of this, let (F, R, S) be a p-

modular system.

Corollary 6.11. Let A, B & MF(G), and let PI denocte the

projective cover of the trivial F[G]-module I. Then

. G . *
(15) dimp((A, B)]) = dim ((A @ B)( [ g))
ge G
*

which also equals the multiplicity of PI as a direct summand of A ® B.

In particular,
(17) dimy,(A)dim(B) > dim_((a, B){)dim (P))

Proof: By Theorem 6.8,

*

(18) a, B <1, a" e )

*
Let A ® B =@ Li’ where Li is indecomposable for all i. Then
i

(19) (a, BY =0 1 L)
1

But now Lemma 2.7 yields that (1, Li)(f #0 if and only if L =P .

Or equivalently, if and only if Li( z ) = F, as P. occurs with

g€G L
multiplicity one in F[G]F[G] and the socle of PI is spanned by the
norm element ) g.
g€ G

Corollary 6.12 (Feit (1969). Let S be a splitting field of
S[G], and let X be a character of S{G]. Let Q € SYIP(G), and

assume an =1 for all g ¢ NG(Q). Let NG(Q) < H and assume
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><(1)2 < |Q[. The
(20) 06 g = 06 Wy
Proof: Let M be an R-form of x. Then
(21) ( Y~ = rank_{((M M)G)
G g (M,

* G
= rankR((I, M @ M)7)

where I denotes the trivial R[G]-module. Now comes the magic step.

We claim that
* G * 1,G
(22) rankR((I, M @ M)7) = rankR((I, M @M )y .

Indeed what we claim is that if ¢ € (I, M* ® M)l’G then

o(I) c (M* ® M)7. If not, then ¢(I) 1is an R-pure submodule of
M* ® M, and reducing modulo 7 induces a non-trivial homomorphism
¢ € (I, I\_/i* ® ICX)G, where X := X/X7 for X € MO(G)' By Corollary

2.9, ¢ is projective as well, a contradiction by Corollary 6.11 as

(M, M)? E (M, M)G. But now, Theorem 5.5 yields that

* *
(23) (, M @ MG =, M e

and going through the same step of arguments as above, only this time

in reverse order, we get (20).

Remark: To prove this result, we took advantage of the fact
that the order of a Sylow p-subgroup always divides the dimension of a
projective module. In order to obtain similar results for other relative
projective homomorphisms, we must produce similar information in this

case. This will be provided by Green's Theorem (11.10) which asserts
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that if an absolutely indecomposable module has vertex V, and
V<Qe Sylp(G), then IQ : V! divides the dimension (or rank) of

the module.

Next we recall that a basic property of the tensor product is
that if A, B € MO(G)’ where O 1is a principal ideal domain, and M

is an @-pure submodule of A, then
(24) 0>M®B +AQ®B >A/M®B ~+0

is exact. This observation and Schanuel's Lemma (cf. the opening

remarks of Section 2) easily yield

Lemma 6.13, Let A, BEMG(G), where ( equals R or

F. Then there exist projective modules Q4 QZ’ P, P,e€ M_(G) such

2 C
that
* ¥
(25) A®B @PITQA®(QB)€BP2
(26) A@B@QlﬁQA®UB®Q2

Proof: By Lemma 1.10.5, (25) and (26) are equivalent. To

prove (25), denote as usual the projective cover of M by P Then

e

* * *

(27) 0 +-0A ® (0B) -~ PA ® (MB) > A Q (B) > 0
* * *

(28) 0>rAQ®B —>A®PB—>A®(QB) >0

are exact sequences, and the middle terms are projective by Corollary

6.4. Thus (25) follows from (27) and (28) and Schanuel's Lemma.

Corollary 6.14 (Feit (1969)). Let A, B € MQ(G), and let
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H' be any family of subgroups of G. Then

(29) . 8 C e (aa, apyM©

In particular, if 9 =F,

1 . R
(30) EXtF[G] (A, B) EXtF[G] (RA, 2B)
Proof: By Lemma 6.13,
* *
(31) 1, A e G-, wer e p MG
*
= (1, () ® aB) @ p )X C
*
= (1, (2a) @ aB)¥C
for suitable projective modules P and P_,, where 1 denotes the

1 2

trivial ©[G)-module, as any map into a projective module is -
projective by Theorem 5.5. Thus (29) follows from Theorem 6.10. Now

(30) is obtained by choosing W= 1.

Remark: There is a very natural isomorphism in (30), namely

G

the following: Let ¢ € (A, B) . As PA is projective, ¢ may be
extended to I € (PA, PB)G. Now, the restriction ¢' of ¢ to RA

maps into 2B and an easy argument shows that ¢' uniquely

determined modulo (RA, QB)C]3 by ¢, although of course ¢' itself and
even i are not uniquely determined. We shall return to this in

Proposition 6.17.
The following is well-known, too.

Corollary 6.15. Let A, B, C € MF(G). Then
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1
(32) EXtF[G]

Proof: By definition,

1 -
(33) Extp g, (A ®@ B, C) =

I}

by Corollary 6.14,

by Lemma 6.13

by Theorem 6.10 and Lemma I1.10.3

by Lemma 6.13

by definition.

We end with a little known

which applied twice yields (29) in the

(A®B, C) = Ext:.[G] (A, B" ® C)

(a @ B), )°C
(A @ B, cc)+C
1,G

(tA ® UB, UC)

*
(A, oB7) ® cc) G

*
(A, B ® C)l'G

1,G

*
Ext ](A, B ®C)

1
FI[G

result of Gabriel (1980),

case where X! = 1. However,

point out that in (34), 1 cannot be replaced by }'.

Corollary 6.16. Let A, B

(34) (a, Byl

= (B, QA)

€ MG(G) . Then

1,G

we
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In particular, we observe that

9o, AP0 = (a, 0a) G - @a, aa)l'G,

. 1 ~2 - 1,G
ii) EXtO[G](B’ 2"A) = (A, B) .

Proof: By Theorem 6.9,

*
a,m%-@men, nt@

= (1, a(a @ B ) I'C

by Corollary 6.11,

*
= (1, 0a & BHDG

by Corollary 6.5 and Schanuel's Lemma

- (B, naytC

by Theorem 6.10. Now i) and ii) are immediate consequences.

Let AeM_(G). By Corollary 6.14, the rings (A, A)l’G
and (QA, QA)I'G are rings and isomorphic as ©G-modules. It seems
natural to ask if they in fact are isomorphic as algebras. And indeed
they are, which will prove very useful in Section 8.

Proposition 6.17. Let A e MO(G)' Then
(36) (a, &% = (a, aa)hC
as rings.

)G G and

Proof: Set El = (QA, QA and E, = (A, A,
denote Ei modulo the space of the projective maps by Ei' Let ¢ € E,.

Then ¢ can be extended to o € (PA, PA)G, as PA is injective in
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the category of ©O-free O©[G]-modules. Furthermore, if @1 and 4)2

are both extensions, then C>1 - @2 contains QA in the kernel. Thus

(@1 - CI>2) € (A, PA)G. Now, the composite of this map and the canonical
map PA —> A is a projective endomorphism of A, and consequently

o€ EZ only depends on ¢ and therefore is well defined in EZ' It

follows that A : E1 — EZ given by A(6) = &' is a ring homomorphism,

as it is O-linear by construction. Assume next that ¢ is projective.
Then ¢ may be factored through PA, i.e., there exists an extension

d of ¢ in (P P )G such that ¢(PA) € QA  which forces A(¢) = 0.

A’ TA
Thus A induces a ring homomorphism from El into EZ' Next we
prove that A is surjective: Let o € EZ' Then o 1is induced from
G

some ¢ € (PA, PA) , as PA is projective. Furthermore, by
construction of ¢, ¢(RA) € QA, and thus o may be obtained from
o € El’ where ¢ 1is the restriction of ¢ to A, in the way
described above, which establish the surjectivity. Finally, injectivity
* *

follows by duality: Set B = (RA) . Then 0B = A by Lemma 1.10.6.

G * X G,op L .
But as (A, A)~ = ((A,A)7)", we thus get a surjective homomorphism
from EZ onto El' As O is a principal ideal domain and E1 and

E2 have finite rank over ©, 1isomorphism therefore follows.

We close this section with a few remarks on M ® M and
M® M* for an F[G]-module M.

Consider first M ® M. Let {vl, R, vn} be a basis of M.
Then {Vi ® Vj}i,j form a basis of M ® M. We now define an action of
Z2 = <T> on M ® M, given by (Vi ® vj)T = vj ® vy and then
extending linearly.

Obviously, G and Z, commute in their action on M @ M,

2

Thus any characteristic Zz—invariant subspace of M ® M is an F[G]-
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Definition 6.18. By the exterior (2nd) power of M, we mean

the F[G]-submodule

(37) EZ(M) = spanF{vi ® Vj - Vj ® Vi}

n(n-1)

of dimension 5

If char F # 2, M ® M is a semisimple F[ <T> | ~module, and

we see that

(38) M®M=E,(M & 5,(M
where
(39) SZ(M) = spanF{vi [ vj + vj ® V.l}

If char F = 2, this is no longer true. However, in this
case M @ M = W1 ] WZ’ where W1 is a trivial F][ <"[> ]-module and
W2 is a projective F] <"> ]-module. Moreover, it is easy to see that
as such, Soc(WZ) = EZ(M)’ Also, the socle of M ® M as an

F <7> ]-module, which is W1 (€] EZ(M)’ is the F[G]-module

(40) E'Z(M) = spanF{vi (2] Vi vy (2] vj}
which is of dimension an;l—) Finally, we note that
(41) M/EL(M) = E,(M)

as F[G]-modules, and the isomorphism is induced from the linear map

v —> V(1+T).

(®n)

It is of course possible to consider M for arbitrary n
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and then let the symmetric group Zn on n letters act on this. Multi-
plying by various ideals of F[Zn], we obtain various F[G]-submodules
of V®n . This is described in detail in James (1980). As for applications
this has played a major role in recent activities focussing on the
determination of the simple modular representations of the sporadic
simple groups. Naturally, only small values of n (< 5) are useful.
One gets a good impression of the effectiveness in Thackeray (1981).
The name of the game is always to start with a small dimensional simple
module M which for some reason is known either through the very
construction of the group or perhaps from the existence of a small
dimensional representation in characteristic 0 of its covering group,
and then consider M @ M. R. Parker has developed very ingenious
methods by which it is possible by the help of a computer to decide
whether or not a module is simple if its dimension is not too large.
Using block theory, the subject of the next chapter, it is often possible
to determine simple modules with very small vertices. We have already
seen in Corollary 1.16.8 how all simple modules which are projective may
be determined from the character table, and we shall soon see that the
simple module E of Corollary 16.11 has Z2 as vertex and, which is
more important, a finite group G has such a simple module if and only
if there exists an involution T € G such that C = CG(T)/ <T> has
a 2-block with exactly one irreducible character, a fact that is
immediate from the character table of C, as discussed in Ch. I, Sec. 16.
Finally, a few words on M @ M*. We have already seen in
Lemma 6.1 that M @ M* = (M, M) as an F[G]-module. Also, it follows
immediately from Corollary 6.9 that M & M* has a submodule as well as
a factor module isomorphic to the trivial F[G]-module I. We now have

the following remarkable result.
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Lemma 6.18. Let M be an F[G]-module. Then
*
1) Assume char F ¢ dim M. Then I|M ® M .
ii) The converse of i) holds for all modules M with

o1, W8 = F.

Proof: 1) (Feit (1982), p. 98). Set m = dimpM.  Then

M & M* ~ (M, M) ~ Matn(F) = W as F[G]-modules, where the action
on Matn(F) of G 1is given by conjugation by definition of the G-
action on (M, M). The subspace WO consisting of matrices of trace
0 is an F[G]-submodule of W of codimension 1, and W/WO > I,
Moreover the subspace W1 consisting of scalar matrices is an F[G]~-
submodule isomorphic to I. Obviously, WO n W] = 0 if and only if
dim F ¥ m, and i) follows.
ii) Assume (M, M)G =F = WG. Then in fact WG = W1

Assume char F | dim_ M. Then W cW Now assume W =1 & V.

F 1 0°
Since W1 is the unique trivial submodule of W, W/Wl = V. However,
as W is self dual, (W, DO = F and thus
(42) wiw, D% = (v, p% =0
a contradiction as Wy cW, and W/W1 = I.

Corollary 6.19. Let (F, R, S) be a p-modular system,
and let S be a splitting field of S[G]. Then

i) Let E be a simple F[G]-module. Then dimF(E) is
prime to p if and only if I is a direct summand of E @ E*.

ii) Let ¥ be an irreducible character of S[G], and assume
¥ has an R-form M such that all endomorphisms of M = M/M7 are
liftable. Then x(1) is prime to p if and only if I is a direct

_ _*
summand of M @ M ,
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Proof: i) is clear.
ii) As ¥ is irreducible, (M, M)G * R and thus

(M, ITA—)G = F by assumption.

7. The Green ring.

Let G be a finite group and F any field of character-

istic p.

Definition 7.1. By the Green ring a(G) = aF(G) we under-
stand the free Z-module spanned by the indecomposable elements of
MF(G). Thus addition in a(G) corresponds to taking direct sums of
indecomposable modules.

The multiplicative structure on a(G) 1is imposed from tensor
products of modules. If Ml’ M, € MF(G) and the element of a(G)

2
corresponding to M & MF(G) is denoted by a(M), we set

(1) a(Ml)-a(M ) = a(M; ® MZ)

2 1

This obviously makes a(G) into a commutative ring. We now set
(2) A(G) = ag(G) 8, C

which will be called the complex Green ring. In the following, we will

simply denote the element of A(G) corresponding to M € MF(G) by

M.

Let H < G. We then have a ring homomorphism

(3) r : A(GY —— A(H)

G,H
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induced from restriction of modules (on which we will still use our

. H .
notation . or #G) and a linear map

(4) iH,G : A(H) — A(G)

induced from induction of modules (on which we likewise continue with
$
G or ‘rg).

Denote the linear span in A(G) of the direct summands of
modules of the form NTE, where N € MF(H), by A(G, H). Then
Corollary 6.3 states that

Lemma 7.2. A(G, H) and I ¢ A(G, H) are both

mig g <
ideals in A(G).

For W’ any family of subgroups of G, we let A(G, W)
denote the ideal § A(G, U). In particular, A(G, 1) = K, (G) is

Ued
the ideal spanned by projective F[G]-modules. Moreover we set

X-X'-X"}a () Ker r. )

(5) A _(G) = span
w c Jewe "o

where 0 - X' » X -+ X" » 0 runs through all short exact sequences.
Lemma 7.3. A){’(G) is an ideal in A(G).
Proof: By definition, it is an intersection of ideals.
For completeness, we mention the following

Theorem 7.4 (Dress (1974)). Let W? be any family of sub-

groups of G. Then

(6) A(G) = A(G, ) & A (G
(G) (G, W )P()
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Proof: We shall not give the full proof but only observe that
A(G, W)Aw((}) = 0 by Corollary 6.5. Thus it suffices to prove that

A(G) = A(G, W) + A__(G). In the case where H = 1 this is an old

W
and well-known result: Let M € MF(G) and let Ml' e, Mn denote
n
all the simple composition factors of M. Then M - ) M, € A (G) by

i=1
definition. Thus it sutfices to prove that Mi € KO(G) for all i. But
this follows from Theorem I1.15.9.

It was pointed out to the author by Irving Reiner that (6)

can be derived from Dress (1974).

We shall be more interested in the following beautiful results,
which were recently proved by D. Benson, using the theory of almost
split sequences (see Benson and Parker (1983)). Our proof here will be

completely elementary, though slightly tricky perhaps.

Theorem 7.5. Let H < G. Then
(7) A(G) = Imi ® Ker r
as a direct sum of ideals. Likewise,

(8) A(H) = KeriH,G (53] Ier,H

as a direct sum of vector spaces.
Before we prove this, we state the following striking

Corollary 7.6. i) Let Nl’ N2 € MF(H) and assume

4G . +G tG Ly 1G
(N )m * (N, ),y Then N 7 = N, 7,
ii) Let Ml' MZEMF(G) and assume (MHH)AFG
+G

ayg) - Then My = Mo .
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Proof: Clear. Note that we only use the fact that

ImlH,G n KerrG’H = KerlH,G ) Ier,H = 0.
Proof of Theorem 7.5. We first prove (7), using induction on
‘H'. If ‘H‘ = 1, the codimension of Kerr is 1, which also

G,1

equals dimF(Imi ). As il G(l) ¢ Kerr this case is settled.

1,G G,1’
Suppose therefore that |H| > 1, and set, for each K <H,

o, = Imi and £K:Kerr

K K,G Then O and .'GK are both

G,K* K
ideals in A(G). Moreover, 0LK £K = 0 by Corollary 6.3. By in-

duction, A(G) = a_ & xK for any K < H. As this is an ideal decom-

K

position, we therefore obtain that

(9) A(G) = ] bt + &
K<H K K<H K
and thus
(10) Imr =r ( z a..) + mKerr
G,H G,H K<H K K<H H.K

Let 1 = at+b in this decomposition. In particular, b is NG(H)-

(b))

invariant, and by Mackey decomposition we get rG,H(lH,G

= |NG(H) : H\b. Thus b €& rG,H(DtH), and consequently Ier,H =
rG,H(uH)’ which proves that A(G) = MH + £H as obviously
ULK c OlH for K <H. Now, as JIH £H = 0, this sum is direct.

To prove (8), set V = KeriH,G, W = Ier,H' In order to
show that A(H) = V + W, it suffices to prove that M € V + W for
any ME MF(H)' To prove this we use induction on |K|, where
K <H, to show that (MVLK)H‘I € V+ W. The case K =1 is trivial,
as obviously F[H] = ]ﬁ’— rGH(F[G]) as elements in the Green ring.

Now, we furthermore have that
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G H
(1) (o™, = T (M ® )t
K'nH
vyE€K\G/H
= m(m, 0 ) (M @ v)+ HY mod V
K'nH|<|K]| konA

as elements in A(H), where m is the cardinality of the set

{ve€ K\G/H| [K' A H| = |[K|}. Observe that

Y H o (me v Y)TH € V for all y in this set. As the left-hand
VK

side of (11) lies in W, we are done by induction.

Mg

It remains to prove that VAW =0. Let x € V NW, and

let u ¢ Imi with x = re H(u), using the first part of the

H,G
theorem. We claim that xA{(H) ¢ V. Indeed, if y € A(G), then

(12) iH,G(XrG,H(Y)) = iH,G(X)Y =0
by Corollary 6.3. If z € V, then

(13) (xz) (u)z) = (z) =0

4,6 =iy 660 Yy G

as well. As A(H) =V + W, the claim follows. Finally, let s € A(H).

Then (s) = iH,G(XS) = 0. Thus ud(H =0. As ue€ aH’ we

uly g
also have that uIH = 0. Hence u =0 by (7), and consequently

x = 0.

A number of our results in earler sections may of course be
expressed as properties of the Green ring, but we shall refrain from
actually doing that, and just refer the reader for this, as well as
several further results on the Green ring to Feit (1982). Instead, we
change our focus of interest somewhat and introduce the idea of

periodicity.
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Again, let 0 equal F or R, where (F, R, S) is a
p-modular system. Recall that M €& M_(G) is called periodic if there
exists an exact sequence

(14) O*M*Pn—>Pn_l+...—>P1+M+O

with P.1 projective for i =1, ..., n.

A classical result states the following

Proposition 7.7. Let P be an elementary abelian p-group.
Then the trivial 1-dimensional ¢ [P]-module is periodic if and only if P

is cyclic.
Proof: Seec Cartan & Eilenberg (1956), Ch. XII, Section 11.

Corollary 7.8. A(G) is finite dimensional if and only if a

Sylow p-subgroup of G is cyclic.

Proof: We have already seen that a cyclic p-group only has

finitely many indecomposable non-isomorphic modules. Therefore, if

Qe SylP(G) is cyclic, Corollary 2.5 implies that F[G] only has
finitely many non-isomorphic modules. If Q is not cyclic, Q has a
factor group isomorphic to Zp b Zp, and };y Proposition 7.7, the
family {Qil}i, where 1 is the trivial F[Zp @Zp]—module, contains
infinitely many non-isomorphic indecomposable modules, as obviously I
is periodic if and only if QiI is for all i. Set Ni = QiI, considered

G

as an F[Q]-module by inflation. As Ni| (Ni‘r ) it follows that

¥Q

A
{Ni‘G} must contain infinitely many non-isomorphic indecomposable

direct summands. We also get, obviously, by the same reasoning

Corollary 7.9. Let H < G such that a Sylow p-subgroup of
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H is properly contained in one of G. Then

i) A(G)/A(G, H) is finite dimensional if and only if a
Sylow p-subgroup of G is cyclic.

ii) A(G, H) is finitely dimensional if and only if a Sylow

p-subgroup of H is cyclic.

Remark: Let Q be a p-group. It then follows from
Schanuel's Lemma that if the trivial F[Q]-module is periodic then so is
that of every proper subgroup of Q. Thus it follows from Proposition
7.7 that if the trivial F[Q]-module is periodic, then the p-rank of Q
is 1, in other words Q 1is cyclic or, if p = 2, quaternion. The
converse immediately follows from the example of Section I, 8 if Q is
cyclic. We mention without proof that the converse holds as well if Q
is quaternion. For a proof see Cartan-Eilenberg (1956), Ch. XII,

Section 11.

The key to our observations above was periodicity. Let us
proceed to discuss another important idea, complexity, introduced in
Alperin (1977). Here we follow Alperin & Evens (1981), though. Let

M be an F[G]-module and let

$ ¢ $ ¢

3 2 1 0
(15) v P2 P, PO M 0
be the minimal resolution of M, i.e., Pi is the projective cover of
Ker ¢>.1 and ¢>i+l : Pi —> Pi—l is a surjection.

Definition 7.10. The complexity ¢ = cG(M) of M is the
smallest nonnegative integer such that there exists a positive number X

with

(16) dimP_ < An®!
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for all n sufficiently large.

It has been shown in Lewis (1968) that if Q 1is a p-group
and I is the trivial module, then cQ(I) exists and is bounded by a,

where Q] = pa1

If now Qe Sylp(G) we may induce any projective
F[Q] resolution to F[G] to get a projective F[G] resolution of I,
which shows that cG(I) < cQ(I). However, this resolution tensored with
M will provide a projective resolution of M and therefore cG(M) =c
exists and is less than or equal to CG(I). Thus the complexity of a
module always exists.

It follows that

i) The complexity of M is 0 1if and only if M is
projective.

ii) The complexity of M is 1 if and only if M is

periodic. (One way is trivial, the other not.)

Now the main result of Alperin & Evens (1981), which we shall

quote without proof, is

Theorem 7.11. With the notation above,
(17) cG(M) = m;x{cE(MHz)}

where E runs through the set of elementary abelian p-subgroups of G.

This has a number of interesting consequences, of which we

mention

Corollary 7.12 (Chouinard (1976). M is projective if and
only if M+E is projective for every elementary abelian p-subgroup

E of G.
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Proof: Obvious (by i)).

Corollary 7.13. M is periodic if and only if M@E is

periodic for every elementary abelian p-subgroup E of G.

Proof: Obvious (by ii)).

Corollary 7.13. Let M be indecomposable and let V be a

vertex of M. Then the complexity of M is at most the p-rank of V.
Proof: By the result of Lewis (1968) referred to above.

This whole theory has been further developed and many other
aspects have emerged. We refer to Carlson (1977), (1978), (1979),

Kroll (1980), Avrunin (1981) and Avrunin & Scott (1982a), (1982b).

8. Endomorphism rings.

We continue to let F be an arbitrary field.

Let A, B €M_(G) and set E(A) = (A, A)° and
EA) = (A, A)1C (recall that (A, )7 is an ideal in (A, A)%). We
begin by stating the following well-known observations, where always
a €A, ac €E(A), b e B, BEE(B).

i) A is a left E(A)-module by aa := a(a).

ii) A* is a right E(A)-module by a*m = a* ° a.

iii) (A, B) is an E(B) x E(A)-bimodule by Byo := Boyon
for y € (A, B).

iv) B ® A* is an E(B) x E(A)-bimodule by
(b ® a)a := Bb ® a o. Likewise, A @ B isan E(B) x E(A)-
bimodule by B(a* ® bla := a*a ® Bb. As such they are isomorphic.

*
v) (B ® A, F) is an E(B) x E(A)-bimodule by
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* * *
Boalb ® a) = d¢(b R ® ca) for o € (B ® A, F), where F is con-

sidered as the trivial F[G]-module.

The following supplement to Lemma 6.1 is also well-known, but

we include a proof for completeness.

Proposition 8.1. As E(B) x E(A)-bimodules,
* *
(1) B®A = (A, B)=(B ®A,F)

Proof: First isomorphism: We just have to check that A
*
defined in 6, (1) is an isomorphism. Recall that A(b ® a ) = O ok

*
where Qb a*(x) = a (x)b for x € A. Hence

*
(21) MEG © 2)a) = o, L

=R od)b,a* o O

*

= BA(b ® a )a

as
* *

(3) Pap ara(0) = 2 (GGE(D) = 8(a (a(x))b)

Second isomorphism: Again we recall that

vV: (A, B) — (B* ® A, F) given by
* *
(4) (V)b @ a) =b (y(a))

for ¢ € (A, B) 1is an F[G]-isomorphism. Now
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(5) [7(8Y) (b ® a) =b (8 o ¥ o ala))

(VW) (b8 ® aa)

[8v()al (b™ @ a)

Corollary 8.2. As E(B) x E(A)-bimodules

1,G 1,G

(6) B e sl S -3 0a, HPC

Proof: By Theorem 6.10.

This enables us to improve Corollary 6.16 by taking advantage
of the fact that E(A) = E(QA) as rings (Proposition 6.17).

Define
(7 r.aernC o ((aa e sHbE

as follows: Let PA be the projective cover of A, and set

* * *
V=0A®B €P, ® B. We may then identify A ® B  with

A
* * * * G
PA®B/V. Now, for xePA,yeB and ¢ ¢ ({(A®B ) ) , set
* G *
(8) MPIx @y ) ] 8+ V) =ex8®y +V)
ge G

*
Observe that every element of VG c (PM ® N )G is of the form

* *
(x®y)( ] g) as PA ® B is projective. To see that I is well
g‘G

. G
defined, let a;, a, € PA ® B and assume (a a;- 2)( z Gg) € V1
Then there exists a € V such that (a—(al—a ))( Z g) =0 by

ge G
definition of V(l:', which means that a—(al—az) € Ker ¢, as ¢ maps

onto the trivial F[G]-module. Thus cp(a -a +V) = ¢(a+tV) = 0.

Assume finally that ¢ € ((A ® B ) )(]:', say ¢ = A( z g)
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* ¥
where X € (A ® B ) . Then
* *
(9) P(x @y +V) =A(x ®y () g +V)=0
ge G

as (x®y)(z g) = 0. In fact we have
ge G

Proposition 8.3. The map I of (8) induces an

E(B) x E(A)-bimodule isomorphism
¥ % * *
(10) ((a @ 89O = ((aa 8 BHVY

Proof: I is obviously a surjective E(B) x E(A)-bimodule
homomorphism by definition. As the two modules have the same

dimension by Corollaries 6.16 and 8.2, T is therefore an isomorphism.

We may now prove (see also Gabriel (1980) and

Auslander & Reiten (1975)),

Theorem 8.4. i) There is a natural E(B) x E(A)-bimodule

isomorphism
*
(1) (a, By = (B, 2yt

where the action on the right is given through Corollary 8.2 and the
isomorphism E(A) = EQA) of Proposition 6.17.

ii) There is a natural E(B) x E(A)-bimodule isomorphism
*
(12) A, B3)1C = Extl(B, 0%

_—
Proof: i) By Corollary 8.2, (A, B)'G = ((a @ 87)") "G

= = R 1,G.* *1,G,*
as E(B) x E(A)-bimodules, and ((B, QA) ) = ((QA ® B ) ) as
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E(B) x E(QA)-bimodules. Thus Proposition 8.3 reduces the proof of i) to
showing that if o€ E(P,) and % —> o' is the isomorphism of
Proposition 6.17, then ya = ya' for all v € ((RA ® B*)l’G)*. To see
this, let ¢ € (A ® B))C with o =TI(4) in the notation of

Proposition 8.3. Then

(13) A @ YT g+ VD = ot @y + V)
geG

by (8), while

— * G
(14) (bl ((x ® y)( ) 8) + V)
ge G
= y((alx) ® y*)( T og o+ V(i)
geG

o(alx) 8 vy + V)

by definition of &' and Proposition 8.3.

ii) follows by applying i) thrice (so it must be true. See
Carroll (1875)), as

(15) Exté(B, QZA) = (OB, QZA)l‘G

9. Almost split sequences.

We proceed to discuss an important application of Theorem 8.4,

namely the existence of almost split sequences, or Auslander-Reiten

sequences. The original theory was developed in Auslander & Reiten
(1975) and dealt with arbitrary artinian algebras. Naturally, restricting
our attention to finite group algebras, the task becomes considerably

easler; in fact, we are quite close already. Our primary motiviation is



a striking application of this to the complex Green ring, which has
recently been observed in Benson & Parker (1983) and will be discussed

in the following section.

Definition 9.1 (Auslander-Reiten). Let A be a finite

dimensional algebra over the field F. An almost split sequence is a

short exact non-split sequence of A-modules

(1) 0 X Y

where X and Z are both indecomposable such that if W is any A-
module and ¢ € (W, Z)A is not a split epimorphism, or in other words,
unless W =~ Ker p® Im p and Im p = Z, then ¢ may be factored
through n. We say that (1) terminates in Z.

The point of this of course is that whenever W is inde-
composable and not isomorphic to Z, we obtain an induced short exact

sequence
(2) 0> (W, %> w, VAW, 240

which will prove very useful.

Theorem 9.2 (Auslander-Reiten). Let G be a finite group
and let F be a field of characteristic p, where p divides the order
of G.

Let A be an indecomposable F{G]-module. Then there
exists an almost split sequence terminating in A. Moreover this

sequence is unique up to isomorphism, and its first term is isomorphic to

Q%A

Proof: 1) Existence. By Theorem 8.4,
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(3) (Ext (A, %)) = (4, &)PC

as an E(A) x E(A)-bimodule, with the notation of the previous section.

As A is indecomposable, E(A) is a local ring by Lemma 1.5.3. Thus

it follows from (3) that Exté(A, QZA) has a unique minimal submodule

as an E(A) x E(A)-bimodule or even just as an E(A)-module. Let
2..G — 2..G . .

Y € (RA, Q7A) such that vy = v+ (QA, Q A)1 is a generator of this

submodule. Let

(4) 0 —> A -© X, > A 0

be the uniquely determined non-split extension determined by 7y (see

appendix I). Thus XA is the pushout of y and the embedding

QA —> PA. Let T : PA — XA be a homomorphism such that

po I PA —> A is the natural homomorphism. Thus we have the

following commutative diagram of short exact sequences for B an

arbitrary module and { € (B, A)G:

0 —> 0B Py B 0
lf' l lf
(5) 0 — QA P, A 0
ly lr lid
0 —> 2% %, x, s 0

where f{ 1is an arbitrary lift of f and f{' is the restriction to (B,
as seen before. Now the following successive steps are evidently
equivalent:

a) f is not a split epimorphism;

b) the induced map £, : (A, B)G —> (A, A)G is not
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surjective;
c) the induced map f_*(A, B)l'G —> (A, A)l’G is not
surjective;
. = 1 2 1 2
d) the induced map f : ExtG(A, Q°A) —> ExtG(B, Q°A)

obtained through Theorem 8.4 ii) is not injective;
% _
e) f has vy in its kernel.
From now on the arguments are standard in homological

G
1

Theorem 8.4 i) and thus factors through the injective hull PB of 0B
by Lemma 2.7, say through o PB —> QZA. Hence

*
algebra: That f (¥) = 0 means that v o ' € (0B, QZA) by

(6) [T of -~ ae pI(2(QB)) = 0

and thus Id » f factors through p €& (B, XA)G defined by

[T o f-aoe 5](1;) for b € B arbitrary and b e PB such that

vb) = b, and u. As QZA is indecomposable by Lemma 10.6 v),

n(b)

i) therefore holds.

ii) Uniqueness. Suppose
(7 0—>Xi—>Yi—>A+O

are almost split sequences for i = 1, 2. Then we have the following

commutative diagram

0 X1 Y1 A 0
lol l"l [

(8) 0 —— X2—~> Y2 —_ A ——> 0
o2 loz u

0 — X Y A 0
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where 05 exists by i) and o is the restriction of 04 for i=1, 2.
Consequently, if A = 02 ° Gl € (X, X)G were nilpotent, (7) would split
for i =1, a contradiction. But then A 1is in fact an isomorphism by
Lemma 1.5.3. By symmetry it therefore follows that 9y is an iso-

morphism. Thus ¢y is an isomorphism by the Five Lemma (see Cartan

& Eilenberg (1956)) and we are done.

Corollary 9.3. Let A be an indecomposable F[G]-module,

and let

(9) O—>Q2A—>XA—>A—>0
be the almost split sequence terminating in A. Let B be any inde-

composable F[G]-module, not isomorphic to A. Then
(10) 0> (8, a’A)% > (8, x)% >, %> 0
is exact as well, while

(1) 0 - (A, 2°a)° > (a, xA)G + (A, A > Soc(Exti(a, 2%4)) » 0

G

is exact, where the last term is considered as an E(A)-module and (11)

is the truncation of the long exact Ext sequence (see appendix I).

Proof: (10) has already been pointed out and is obvious

anyway. To prove (11) we first observe that (X A)G maps into a

A
proper E(A)-submodule of (A, A)G = E(A), as the identity of A

does not factor through XA. Hence (X, , A)G maps into J((A, A)G).

A

Thus we in fact have a short exact sequence

(12) 0> (A, 2°)° > (x,, &% >uca, A% >0

A



155

as any element in J((A, A)G) is nilpotent and consequently factors
through XA. However, (11) and (12) are equivalent by Theorem

8.4 1i), as E(A)/J(E(A)) = E(A)/J(E(A)) by Corollary 2.8.

Corollary 9.4. Same notation as above. Let H < G. Then

A is H-projective if and only if (9) restricted to H does not split.

Proof: If{ A 1is H-projective, the restriction of (9) to H
does not split by Corollary 2.4 v). Conversely, if M is not H-

+G

projective, the map ¢ : (M) —> M of Sec. 2, (6) does not split

+H
and thus may be factored through XM' However, ¢ considered as an

F{H]-homomorphism does split, and consequently (9) restricted to H

splits.

10. Inner products on the Green ring.

We continue with the notation of the previous sections. Most

of the following observations are inspired by Benson & Parker (1983).
Definition 10.1. Let A, B & MF(G). We then set

(1) <A, BY = dimg(a, B)©

G

(2) <A, B> | = dim(A, B)S

and extend these to be defined on the complex Green ring A(G) in the
following way.
If x=]3M €A(G), where A €C and (M} isa set of

representatives of the indecomposable modules in M_(G), we set

F
* % G * G
x = zAiMi' Now, as (A, B)” = (A ® B) we may extend <., .>
and <., .> tomaps A(G) x A(G) — C, linear in the second

1
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¥ %

variable, antilinear in the first, and <x, y> (resp. <x, y> 1)
¥ * ¥ *
equals <y , X > (resp. <y , X >1). Also (x ) = x.

The trivial F[G]-module I = IG will also be denoted by 1

as an element of A(G). We now set
(3) u=u.=P_ -UI, v=v.=P -2I
The reason for dropping the subscript G is that by Schanuel's Lemma,

(4) ug ulug = vy rg vy = vy

We now have

Lemma 10.2. With the above notation,

i) M = u(PM-.:M) = V(IM—Z)M)
*
ii) uv=vu =1, and u =v

iii) uM = IM—UM, and vM = PM—PM for any M & MF(G).

Proof: By Lemma 6.13,
(5) UI®OM=M®P

where, as an element of A(G), P = PIQM—P As moreover

M*
PM = PIPM—OIPM by Corollary 6.4, we consequently have

(6) u(PM—QM) = PIPM—UIPM—PIQM+61QM

= - OM-—
PM PI«QM+M+PINM PM

=M

The second equality of i) is proved in the same way. Now ii) is a

*
special case (M = 1) (that u = v follows directly from the definition)



and iii) follows from i) and ii).

Lemma 10.3. Let x, y, z € A(G). Then

I O S CR A IR CAS SN

Moreover,

N R NI BRI

Proof: (7) is an immediate consequence of the definition and

Theorem 6.10. Also, Corollary 6.11 yields that

(9 (1, MY = (pp. M) - (oL, My = {u, M)

and hence <1, x>] = <u, x> for all x € A(G). Now the first part
of (8) follows from (7) and the second part in turn by using that

uv = 1.

Furthermore, as a corollary of Corollary 6.11, and by

definition, we have

Lemma 10.4. Let A, B € MF(G). Then

H {a, B) < {a B).

ii) <., >3 is an inner product on A(G), 1i.e., is
symmetric.

iii) Assume <A, B> L # 0. Then <B, A> # 0.

Proof: i) is by definition.
ii) By Corollary 6.11, <A, B> 1 equals the multiplicity of

*
PI as a direct summand of A ©® B. As PI is self-dual, this also

*
equals that of PI as a direct summand of A @ B
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iii) follows from i) and ii).

Remark: Observe that Benson & Parker (1983) defines

<., .>1 (which they denote <., .>) as <Mi’ Mj>1 equal to the

*
multiplicity of P_. as a direct summand of M.1 ® Mj, rather than our

I
(2), which are the same by Corollary 6.11.

We may now prove one of the main results of Benson &
Parker (1983). For M a module, we denote the radical by J(M).

Now, for each i, let
2
(10) 0-+-Q'M » X =-M +>0
i i i
be the almost split sequence terminating in Mi'
(11) 0-+-0M., = Y, > UM, - 0
i i i
that terminating in UMi. Set

Mi-J(Mi) if Mi is projective

(12) X. =

Mi+QzMi_xi otherwise

Similarly, we set

Soc(Mi) if Mi is projective
(13) y. =

Y.-UM.-QM, otherwise

i i i

Theorem 10.5. With the notation above, we have

(14) (v xj> = (v, y].>1: S
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In particular, <., .> and <., .>1 are non-singular in the sense that
if there exists a € A(G) such that <a, X>l (resp. <a, x>

resp. <X, a>) equals 0 for all x, then a = 0.

Proof: 1If M]. is not projective, <Mi' x]> = 6ij by

Corollary 9.3. If Mj is projective,

. G, _ .. G
(15) dlmF((Mi’ V[j) ) = d1mF((Mi, J(Mj)) )+ Sij

which is equivalent to the claim.

Likewise, <Mi’ y]. >1 = 6.1]. if Mj is projective. If not,

(16) <M1’Yj>1,: CUTR

by Lemma 10.3, (8),

:QWﬁw,%>

by Lemma 10.2 iii)

as 1 is projective

ij

by the first part.

11. Induction from normal subgroups.

Let G be a finite group, and let H be a normal subgroup.

Let © be a commutative ring such that Krull-Schmidt holds for
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O[L]-modules for any L < G. The purpose of this section is to discuss

the decomposition of N$G for N!MG(H) and related topics.

Definition 11.1, Same notation as above. If N is inde-

composable, we define the inertial group T of N in G as
N T=T(N)={ge G|IN =N 8 g}

If T =G, then N is said to be G-stable.
Let us start with the classical result.

Theorem 11.1 (Clifford (1937)). Let G be a finite group,
HA G and let K be any field. Let M be a simple K[G]-module,
and let N be a simple K[H]-submodule of M. The inertial group of

N in G is denoted by T. Set N =.{INt|t € T}. Then

i) MH—I = @ Ni’ where for all i there exists g; € G with
i
Ni = Ngi as K{H]-modules. In particular, M&H is semisimple.
i) M = ng.
i) M, = (@ N ® g)(e) where N = N(¢).
g 6 T\G

Proof: i) Obviously, z Ng is a K[G]-submodule of M,
geG
hence equal to M as M is simple. Also, Ng is simple for all g € G,

as N is. Thus M is a sum of simple K[H]-modules, and i) follows.
ii) By definition, ICI is a sum of K[H]-modules isomorphic

(e)’

to N. Hence there exists e @ N such that N = N as N is

simple. Moreover,

(2) M= ] Ng= 7 Ng
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However, as no direct summand of I:Igi is isomorphic to a direct
summand of Izlg]. for i # j, this sum is a fortiori direct and ii)
follows.

iii) is an immediate consequence of ii) and the fact that

INEEENION

Theorem 11.2. Let F be an arbitrary field of characteristic

p, and assume H A G is of index prime to p. Let H <X <G.

Then

i) Let M be a simple F[G]-module. Then M¢X is semi-
simple.

. . +G . .

ii) Let N be a simple F[X]-module. Then N is semi-
simple.

Proof: i) Consider first the case H = X. Then i) is just

a special case of Theorem 11.2 i). To prove ii) let V be a simple sub-

o

module of N Then V¢H ~® (N ® gi) for suitable g.l‘s in G.
i
As V is H-projective, it follows that for some i,
G +G . . .
V|(N ® gi) =~ N , as H is normal. Thus V is a direct summand
AG
of N7, and ii) follows by induction.

Now let H <X <G be arbitrary. As N 1is H-projective,

A L
N| (NH{) ‘X, Moreover, NH{ is semisimple by what we just proved.

%
Hence there exists a simple submodule W of NH—I such that N|W X,
Thus the general case ii) follows from the special which states that
WﬁG is semisimple. Finally, the general case i) follows from i) and ii)

in the special case and Mackey decomposition.

We now turn to the main object of this section, which is the
decomposition of modules induced from a normal subgroup. The following

short and elegant treatment goes back to Tucker (1965), Conlon (1964),
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Ward (1968) and Cline (1972). We have beecn inspired by Knorr's (1979)
beautifully short and precise repetition of this, which again is inspired
by Dade's conception of Clifford theory. For alternative sources, the

reader may therefore want to consult Dade (1970) and in particular (1980).

We return to the notation of Definition 11.1.

A
Lemma 11.4. Assume T = H. Then NJG is indecomposable.

A
Proof: Assume N O = M, ® M,. Then M., = & (N @ g),
—_— 1 2 ivH
g€ l;
i=1, 2, for suitable subsets Tl’ I's5 of H\NG with F] n FZ = ¢ and

- Lo -1
FluFZ—H\G. Let g; € I'i,l—l, 2, and set 83 =81 85 Then

M1 = M1g3. But

Migayy © fv (N ® gg3), a contradiction as

"1
g185 € I‘Z.

Thus it seems reasonable moreover in the following to assume
that N 1is G-stable. For any g € H\G, let ¢g : N —> N be an
O-isomorphism such that x — $g(x) ® g is an ([H]-isomorphism of
N inte N ®g. Then ¢ (xh) = ¢g(x)ghg_l for all h € H.

Recall that

A a
(3) P (N NTOT s (NG s
is an O-isomorphism, and
(4 Fro(e)(Jx, ® g.) = Jolx.)g
HW/ LK ¥ 8y LK By
A
Also, (N, N'G)H = 2] (N, N ® gi)H. Set
g, € H\G
.G H
(5) Eg_ = Fr((N, N @ g.))

1
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Thus E =@ E_ . Assume g, = 1, without loss of generality. Notice
i “i

that E1 is not only an -space, but a ring, as
G _ .G G
(6) Fri(6) ° 6,) = Friey) o Fri(s))

for ¢Jl, ¢>2 € (N, N ® I)H. We identify E with the ring (N, N)H.

1
Alternatively, any ¢ € (N, N)H extends uniquely to ¢ € E by

(7 $(x 8 g) = 9(x ® g ,

and if ¢ € E, then er] if and only if $(x ® 1) € N ® 1.

For g]. e HN\G, let ¢g € Eg be the map obtained by
] i
applying Frg to the isomorphism x —> @g (x) ® gj of N onto
j
N ® g;- Then

(8) wg_(ixi ®g,) = Zeg(xi) ® g
I i
and thus E = Elwg = Lg El. Moreover, if g', g" are arbitrary, we
] ] ]

may always for ¢ , ., choose ¢ , o ¢ ., which shows that

gg g g
E E ., =E . (Notice that E does not depend on the choice of g..
g''g g's g i
Thus

Proposition 11.5. With this notation,

and

(10) B0 Eqbgn = By

for all g', g”" &€ H\G. Also, E1 is ring isomorphic to Elwl and we
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identify these rings. In particular, E 1is a free E -module, as E

1 1

is local, of rank |G : H.

Remark: In parts of the literature, E 1is called a strongly

graded Clifford algebra. However this does not really add anything to

its properties.

Remark: We want to stress that it is not usually true that

VoW = g for all g', g" € H\G.

In the following, we let (F, R, S) be a p-modular system
and we let @ equal R or F. Otherwise, we continue to use the

notation and assumptions above.

Lemma 11.6. J(EI)E c J(E).

. 1
i i

Proof: As Elwg = ‘u‘,g E. for all i.
We may now state the first main result:
Let ep res €y € E be primitive idempotents such that
{Ui}, Ui = eiE form a set of representatives of the isomorphism classes

of p.i.m.'s of E. Thus
I
(1D E.* & U

for uniquely determined diE N, and Ui ¥ Uj if and only if 1 = j.

Theorem 11.7. With the notation and assumptions above,

N r (d.)
(12) NG g oM !

where Mi = ei(N¢G) is indecomposable and Mi ~ Mj if and only if

i =j. Moreover, Mi = Ui(N ® 1) if we consider NfG as a left
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E-module in the usual way, and

(13) rankg(Mi) = rankg(N)rankEl(Ui)

(Note that Ui is a free El—module, as E is and E1 is local.)

Proof: (12) is an immediate consequence of (11), by Fitting's

4G, +G _
Theorem. Also, ei(N )_Ui(N ), as Ui—eiE. However, as

A
N1LG = E(N ® 1), we also have that Ui(N‘G) = Ui(N ® 1). In par-
ticular, < holds in (13). Summing over all indecomposable components
of NTG, we deduce that then eqguality in fact must hold.
For W a family of subgroups of G, we set
E _ (N+G, NTG G

0 ))I‘ . We then have

Proposition 11.8 (Kndrr (1979)). Let W' be any family of

subgroups of G. Then

(14) E = (E)) E

Proof: By Corollary 5.4 ii).

Assume now furthermore that EJ/J(EI) ~ F  which for

instance is the case if N is absolutely indecomposable. Then

(15) E/J(EDE = F [G/H]

a twisted group algebra of G/H over F. The twisting comes from
(16) by ¥ j = (g, gngigjmod J(EE

where the factor set u(gi,g].) 4 F is not always 1.
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In order to prove a very important theorem of Green (1959a),

(1962b), we need the following well-known result:

Proposition 11.9. Let F be any perfect field of characteristic
p, and let P be a p-group. Then any twisted group algebra F [P] is

isomorphic to the ordinary group algebra F[P].

Proof: Anybody familiar with cohomology will of course be
aware of a proof of this fact. If F 1is perfect, it follows from the fact
that HZ(P, F#) = 0. And if F is finite it is of course therefore as
well a consequence of Schur's Theorem on the existence of compliments in
finite groups to normal subgroups of order prime to their index. If F
is not finite, the same argument of course works if the multiplication
coefficients lie in a finite field. However, for the sake of
completeness, we will give a self~contained proof (which of course is
cohomology in disguise).

As remarked, we must assume that F 1is perfect. Now

A

multiplication in F [P] is given by
(17) X%, = oc(xl, XZ)XIXZ

for X X, € P. For every x € P, we set

1
(18) fx) = ( J] alx, 2)) TeT
z&P

which is well defined as F 1is perfect. Now the associativity of F [P]

implies that for all x, vy, 2z € P,

(19) aly, z)olx, yz) = alxy, zlalx, y)
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Taking the - Ipi('th root on both sides and then the product for all =z,

we get
(20) FEOF(5) = F(xy)alx, v) !

But then {f(x)x, *} 1is a group isomorphic to P, where the iso-

morphism is given by x — f(x)x, since
(21) f()x.f(y)y = f(xy)xy

by (17) and (20), and we are done.

As an immediate consequence of this and (15) we now obtain

(recall that € equals F or R)

Theorem 11.10 (Green (195%a)). Let H & G with G/H = Zp.

A
Let N be an absolutely indecomposable ([H]-module. Then N‘G is

absolutely indecomposable.

Proof: We may as well assume that F is algebraically closed.
Now, by Lemma 11.4 we may also assume that N 1is G-stable. Using

the notation above, we therefore have that

(22) E/J(E)E = F[Zp]

1

Hence E/J(E) =~ F[Zp]/J(F[Zp]) * F and it follows that NJrG is inde-

composable. (For definition of absolutely indecomposable, see App. III.)

Remark: It is of wvital importance to assume that N is
absolutely indecomposable. For an example to illustrate this, take
(F, R, S) such that S does not contain a third root of unity and

F = GF(2), which is possible. Let G be the symmetric group of
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degree 3, and H the normal subgroup of order 3. For N, take an
R-form of the 2-dimensional simple S[H]-module. Then NfG ~M& M,

where M¢H = N.

We mention a couple of very important consequences, all due

to Green.

Corollary 11.11, Let H < G and assume there exists a chain

of subgroups
(23) G=G,>G,>... >G_=H

such that Gi+1A Gi’ for all i=1, ..., n-1 and \G : H' is a
power of p. Let N be an absolutely indecomposable G[H]-module.

Then NfG is absolutely indecomposable.

Proof: An immediate consequence of Theorem 11.10 and

induction.

Corollary 11.12, Let G be a finite group and let M be an
indecomposable C[G]-module. Let V be a vertex of M, and let
V<Q e Sylp(G). Then [Q : V| divides rank (M).

M: By Theorem 3.3 i), each direct summand of M#Q has
a vertex of order at most |V|. Thus it suffices to consider the case
G = Q. Also, by Lemma 3.10 it suffices to consider the case where
€ =F. Let F be the algebraic closure of M, and let N & M (V) be
a source of M. Then (N ®F PT)ﬁQ = NMQ ®F F, and thus M ®F F is

a direct summand of this module. However, any direct summand of

(N ®F PT)MD has a dimension divisible by |Q Y

by Green's

Theorem 11.10.



Corollary 11.13. Let H & G and assume G/H is a p-
group. Assume moreover that F 1is a splitting field of F[G]/J(FI[G])
and let N be a simple F[H]-module which is absolutely indecomposable
such that its inertial group equals G. Then there exists a simple
F[G]-module M, uniquely determined up to isomorphism, such that

MH—I = N,

. AG . W (JG:HD
Proof: As (N )H—I N
composition factor M of NN:I has the property that N| MH—I . Let PO

by assumption, any simple

denote the projective F[H]|-cover of N, P the projective F[G]-cover

of M. By our assumption on N, PO is absolutely indecomposable.

N
Hence p G is an indecomposable projective F[G]-module by Theorem

0
+G +G

11.10. By The Nakayama Relations, M ¢ PO and thus PO = Pl. In

particular, any composition factor of I\j is isomorphic to M. More-

over,
(24) o, P =, N9 =
AG . : (m)
N , = N
as N E'Pl’ which proves that M¢H N, as M#H N for
some m,

Remark: In other cases, where no information on G/H is
available, it is more difficult to take advantage of the important conse-
quence (15) of Theorem 11.7. However, from the theory of projective
representations of finite groups (in the sense of Schur, see Curtis &
Reiner (1982), §11), it does follow that di of (11) divides |G/H| for
all i, still under the assumption of course that E]/J(E]) = F. Also

we wish to point out that if |G/H| is prime to p, then J(E)
(d)

= J(E])E. In this case we moreover have that MNH =N ! by (13),

as U1 is simple then.
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In the next chapter we shall demonstrate how to deduce a
deep result on vertices of simple modules and R-forms of irreducible

characters (see Knorr (1979)) from Theorem 11.7,

For other aspects of Theorem 11.10, see Broué (1976), where

the assumption on the field is weakened.

Our last result in this section is a new result due to Alperin,
Collins & Sibley (1983) which will provide us with a very conceptual
proof of the striking fact that the determinant of the Cartan matrix is a
power of p, where p is the characteristic of the field involved.

In the following we let H & G, and let F be a field of

characteristic p. Set G = G/H and let E E, represent the

1o By
isomorphism classes of simple F[G]-modules. Denote the projective
F[G]-cover of E. by ﬁi and the projective F[G|-cover of E. by P,
Set J = J(F[H]) and let A be the augmentation ideal of
F[H]. As HAG, F[H], J and A are all F[G]-modules, where the

action is given by conjugation.
Theorem 11.14. With the notation above,

(25) B ® siagt - PjJi/PjJ1+1

as F[G]-modules, for all i,j.

Proof: Our basic assumptions yield the existence of a

surjective F[G]-homomorphism y : P]. — lgj where 15]. is viewed as
an F|G]-module by inflation. As H acts trivially on 131. it follows
that P].A c Ker u. On the other hand, P]./P].A is obviously an

F[G]-module, and indecomposable as such, as Pj is an indecomposable

FlG]-module. In particular, we have



Lemma 11.15 (Willems (1980)). With the notation above, ﬁj

and Pj/PjA are isomorphic as F[G]-modules.

Next we consider the projective F[H]-cover Q of the trivial

F[H]-module I As HA&G, Q~0Q0® g as Fl[H]-modules for all

H

. —

g € G. Thus (Q‘G)+H = Q(‘GD. Moreover, as QfG maps onto

IHTG ~ F[G] which in turn maps onto E]., Pj is isomorphic to a direct
+G (m.)

summand of Q ~. In particular, PjV{ *Q 3 for some rnj ¢ N. By

definition, QJ = QA and thus (P].J)H\I = (PjA)¢N' As PA o PJ, it

follows that P].A:P].J. Thus ISJ. =PJ./PJJ as F[G]-modules. Consider

the map

(26) P, /P @ Al PjJi/PjJi+1
defined by

(27) (x + PjJ) ® (y + AJi) s xy + PjJi+1

for i > 1. This is obviously well defined, F-linear and surjective.

Moreover, for all g e G,

(28) (G +PD) @ (y+ athg

= (xg + P].J) ® (g_lyg + AJl) —> xyg *t P].J1+l

= (xy) + B3 e

and thus the map of (26) is an F[G]-homomorphism. It remains to
prove that the map is injective. But this will follow from the surjectivity

if the two modules have the same dimension. However if we in particular
(m.)
consider them as F[H]-modules and recall that Pj“{ e ] , it

suffices to prove that
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(29) dim(Q/QJ ® stiashy = dimF(QJi/QJiH)
But
(30) dim (Q/QT ® giiashy = dimF(Ji/AJi)

. i,.i+1
= dlmF(J 1377, IH)

which equals the right-hand side of (29) by Lemma 1.5.

For a number of other relations between projective modules of

F[{G] and F[G/H] see Willems (1980) and Huppert & Willems (1975).

12. Permutation modules.

Let © be a principal ideal domain. If H <G, we let I

denote the trivial ©[H]-module, lH the trivial character of H.

Definition 12.1. By a transitive permutation module over o

A
P

for some
H

we understand a module in MG(G) isomorphic to 1
H < G. Alternatively, it is a module isomorphic to a (right) principal
ideal of ([G] generated by an element of the form z h.

heH
A permutation module is a module isomorphic to a direct sum

of transitive permutation modules.
Assume Krull-Schmidt holds for ¢[G]-modules. By a

trivial source module (over ©0) we understand an indecomposable direct

summand of a permutation module (over Q).
The basic (and trivial) properties of permutation modules can
be expressed most smoothly if we consider them as elements of the Green

ring:
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Lemma 12.2. Let B(G) denote the vector space spanned by
all permutation modules in the complex Green ring. Then B(G) is a
ring, called the Burnside ring. Moreover

) iy o (B(H)) € B(G).

i) r

6. u(B(G) eB(H).

Proof: Closure under multiplication follows from the Mackey

tensor product theorem.

The following important results show that trivial source

modules are much easier to work with than modules at large.
Lemma 12.3. Let H, K < G. Then

+G +G.G _ +G rGy
(D rank (I, I )7 = (g 7 L T = |H \G/K |

Proof: This is just an application of the Nakayama relations:

(2) (IHfG' IKfG) G - (IHfGH(, IK)K
=] (1 ) 1o
g, & H\G/K HginK
&
- (1 1 yi K
g, € H\G/K HginK HginK

which obviously is of dimension |HN\G/K|. The second equality follows

by choosing € to be a field of characteristic 0.

As promised in Ch. I, Section 14, we now prove, as a

corollary of Lemma 12.3,

Theorem 12.4. Let (F, R, S) be a p-modular system.

Then
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i} (Scott (1973)) The endomorphism ring of a transitive
permutation module of F[G] is liftable.

ii) A trivial source F[G]-module is liftable, to a trivial source
R[G]-module.

iii) Let A and B be arbitrary trivial source modules of

R[G], and set A resp. B equal to A/A- resp. B/Bw. Then
= T G G
(3) (A, B)" = (A, B) /(A, B) 7

In other words, F[G]-homomorphisms between trivial source modules

(even if they originate from different permutation modules) are liftable.
Proof: Let H, K <G. From Lemma 13.2, we get that

+G
H

+G

+G +G
ST VIC TR ST

(49 (I

JEEPN _ A
In particular, if H = K, the idempotents of (I G I ‘G)G

H ' "H
+G +G .
(IH , IH ) are in one-to-one correspondence to each other by
A
Theorem I.11.2, hence so are the direct summands of IH‘G and IH s

and i), ii) and iii) all follow.

Remark: In case H = K, we may also prove i) above by
simply finding a basis, which goes back to Schur, of the endomorphism

ring. This i1s Scott's approach, and we will return to that later.

In the following, we first discuss thec basic properties of
trivial source modules. We therefore continue with the notation of

Theorem 12.4, and let 0 equal F or R.

Lemma 12.5. Let M € M_(G) be indecomposable and let V

be a vertex of M. Then M is a trivial source module if and only if
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IV is a source of M.

Proof: This is easy to check. But since it seems so
powerful let us just briefly comment on two different ways of seeing this.
The first is simply that otherwise we obviously would have chosen

another name. The second is Mackey decomposition.

Example 1. Let V be a p-group, let N be an inde-

composable projective Q[N (V)/V]-module and inflate it to an G[NG(V)]—

G
module. Then any indecomposable direct summand of N)FG, in

particular its Green correspondent, is a trivial source module.

For the following lemma, see Landrock (1981b) and Damgard
(1983). Also, ii) below was first observed by Scott (1973), but the

proof is more involved.

Lemma 12.6. Let M € M.R(G) be a trivial source module.
Thus M := M/M7 is the corresponding trivial source module for F[G].
Let X5 be the character of M ®R S.

i) Let O <G be a p-group. Then

(5) dimF(Soc(M¢Q\) = Oy 1Q)Q

ii) Let x € G be a p-element. Then X&A(x) equals the
number of indecomposable direct summands of M¢ <x> isomorphic to
I <x> . In particular, M}(x) is a non-negative integer. Moreover,

iii) ‘A\“A(x) # 0 if and only if x belongs to some vertex of M.

+ —
Proof: Let M‘IH G. Then any direct summand of M#Q is
A
of the form (I )‘Q for some g € G by Mackey decomposition and
HEnQ
Example 2 of Section 6. Moreover, as we saw in that example,
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(6) dimg (Soc (I ' =1 )'Q, 100
H®n Q HEnQ
and (1 )+Q is the character of (f TQ) ®R S. This proves
H8 a0 HE nQ 0
i). Choosing Q = <x> we see moreover that (1 ) (x) =0
HENnQ

unless HE NQ =0, in which case it equals 1, and ii) follows.
Finally, choosing H = V in view of Lemma 12.5, where V 1is a vertex
of M, and Q = <x> we get HE nQ =0 for some g e G if and

only if x € H® and iii) is proved.

Lemma 12.7. Let H < Q. Then

i) IHTG has exactly one factor module and exactly one sub-
module isomorphic to IG.
ii) The indecomposable direct summand P(H) of I *G with

H

IG as a submodule is identical to that with IG as a factor module.

iii) Let Hi <G, i=1, 2. Then P(Hl) = P(HZ) if and only

a Sylow p-subgroup of H, is G-conjugate to one in H

1 2’

iv) The Sylow p-subgroups of H are vertices of P(H).

Proof: i) follows directly from the Nakayama relations.

+G

ii) Let Xy denote the character of IH . Then
A
Xiys = 1. s ever irect summand o is liftable, there is
Oy 1g)g =1 A y di d of IH’G is liftabl h i
precisely one indecomposable direct summand P(H) of IHfG, whose

character has the trivial character of G as a constituent. But then
P(H) has the claimed property by Theorem I.17.3.
iii) is an immediate consequence of ii) and Lemma 12.5, as
+H .
1H|1Q where Q € bylp(H).

iv) follows from iii).

We now concentrate on the endomorphism ring of a transitive
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permutation module.
For notation, let H <G and set A = {Hxi}, where
x, € H\ G and x) 6 H. Let {A].} denote the orbits of G on A X A,

For X € A, set
(8) Aj(X) ={Y € A |(X, Y)eAj}

Recall there is a one-to-one correspondence between double cosets of H
in G and the orbits of G on A x A. Indeed, if H\G/H = {Yj},
and Xi = Hxi, then (Xl’ Xl\{j) is a full set of representatives of
orbits on A x A. We therefore choose notation so that (Xl’ Xle) € A]..

It now easily follows that if X = X g, then

.
(9) 3{X) = {X,%h|h € (H A H Y\Hlg

In particular, k]. = fﬂj(X)\ = |H : HnaH?'.
We now define A]. € (Zp, ZA) where ZA is the free Z-span

over A by

(10) A (X) = N Y
Y & A].(X)
and extend linearly. It immediately follows that A:.| € (Z4, ZA)G, as

A].(Xg) = A].(X)g. We now have

Lemma 12.8 (Schur (1933)). The A].'s form a basis of

(za, 1),

Proof: Let A € (ZA, ZA)G. Then A is completely de-

termined by A(Xl)' However, as th = X1 for all h € H, it follows

that for arbitrary j, all Y € A]. occur with the same multiplicity, and
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we are done, as the Aj's obviously are linearly independent.

Next we recall that if o= Z h, then
heH

(11) Za = (Zo)ty = spanylox,} = 0Z[G]

as Z[G]-modules, and the isomorphisms are given by

Xi —> o X, —> ox,. This induces an action of Aj on OZ[G],

namely
(12) Aj(0) = oy I, m= 1 x
he(HAH H\H x € Hy,H
Thus
Lemma 12.9. Aj(o) :ajo' where
(13) a, = ( ) k )Y

LoV
keH/(HnH )

Proof: As o= ) h=( } k Y § h ).

-1 -1
vy Y.
keH/(HAH ) heHANH

Corollary 12.10. Set @(H) = {a € Z[G]|ac = 0},
$H(H) = {a€ Z[Gllace dZ[G]}. Then X (M) is a subalgebra of Z[G],
otH) is an ideal in $®H), and
(14) L /oen) = (zo, zm©

Moreover

(15) LH) = or(H) ® spanz{aj}
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as a Z-module.

In the following, we set E = (ZA, ZA)G. Thus

E. = E ®Z S = (SA, SA)G while E

s := E @Z F = (FA, FA)G because

F
of the fact that A is G-invariant.

As S/ is semisimple, ES is a semisimple ring. If we
moreover set ER = E @z S, the relations between ER, ES and EF
are described in Ch. I, Sections 12, 14, and 15. In particular, we may
speak of the blocks and the decomposition numbers of this triple, the
study of which clearly is necessary in order to obtain more information
about FA.

Here we proceed to sketch how to decide the number of blocks
of ER. In the following chapter, we will investigate these blocks
further. This was first done by Scott (1973).

The following is inspired by some lectures D. Benson gave on

the subject, and Damgdrd (1983). We will assume that S 1is a splitting

field of ES or equivalently, that any direct summand of SA is

r dimSVi
absolutely indecomposable. Thus (E.) = @V, , where V,
S ES =1 1 i
is a set of representatives of the simple Es—modules. Similarly, as an
S[G]-module,
dimSV.,
(16) Sa = @ X, !

1

where Xi is a simple S[G]-module, and Xi = X]. if and only if 1 = j.

If e is the central primitive idempotent of ES corresponding to V,,
dimg V. !

S'i
. Moreover

then e(SA) = Xi
(17 SA =@ V,

as a left Es—module.
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We will now relate this to our natural basis {A].} of ER.
First of all we define a pairing on the orbits of G on A X A simply
by the following: If (X, Y) € Ar, we let A'r be the orbit which
contains (Y, X).

Now, let Tr : ES —> S denote the trace-function on

elements in ES acting on SA. Our first observation is that

(18) Tr(A,A)) =[G : Hlk 6 _

where we recall that ks = \LS(X)}. This easily follows from our definition
of As' Also, we let Tr.1 : ES —> S denote the trace function on

elements of ER acting on Vi' Obviously

(19) Tr ~ ] dimg(V)Tr,

1

Proposition 12.11. With the notation above,

dim(X,) Tr.(A )
D e = e (I —— A)
i G: . kr r

|G : H[dimg(V,)

i) dimg (%) = T Tr.(A)Tr (A )k !
ittr irr
r
_1 |G HldimgV,
iii) z Tri(Ar‘)Trj(Ar)kr = Oij —dlm—sxl_

Proof: Let e = ZarAr. By (17), (18) and (19),
(20) Tr(A_e) = |G H\krar = dimg(X ) Tr, (A )

from which a, is determined, and i) follows. In particular, as

Tri(ei) = dimS(Vi)’ we get
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dimS(Xi)Tri(Ar')Tri(Ar)

(21) dimg(V.) = ZarTri(Ar) =] TG H_I?r
r r

from which ii) follows. As evidently Tri(ej) = éijdimS(Vi), iii) follows

as well.

Example 1. Choose notation so that X1 is the trivial 1-
dimensional S[G]-module. It is easily computed that Trl(Ar) =k,

and

1

(22) 1= G ar (LAY
T

Thus e, € E

1 K if and only if |G : H| is prime to p, which is hardly

any surprise.
Another interesting fact is

Proposition 12.12. With the notation above,

(23) Tr.(A) = Tri_(Ar,) ,

the complex conjugate.

Proof: (Damgard (1983). Introduce an inner product on SA
such that A form an orthonormal basis. Hence each orthogonal
complement of an S[G]-submodule of SA is an S[G]-module as well.
In particular, SA decomposes into a direct sum of orthogonal simple
S[G]-modules. Thus we may choose another orthonormal basis
r= UI‘i, where I‘i is an orthonormal basis of ei(SA). Let éq
denote the matrix of A w.r.t. A. Then there exists a unitary
matrix U such that U_lA U is the matrix of A w.r.t. T.

—-q q
)tr

, it follows that

However, as obviously A , = (A
- —q
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(24) (U_léqU)tr - L—Jtr(K )trLT-ltr - U—lAq,U

as A = A , and (26) follows.
q q

Example 2: If H =1, (23) simply states the well-known
result that x(g) =X(g_1) for any irreducible character x of G and

any g € G.

Our first observation is that if somehow we can find the
character table {Tri(Aj)}, we at least know something about the
possible components of FA other than just the fact that they are
liftable. More precisely, just as in the case of a group algebra, the
character table {Tri(Aj)} of ES determines the p-blocks of ER

completely. Indeed, we just imitate the proof of Theorem I.12.6.

For each i, we define the map wy Z(ES) —> S by

— Q : -1
(28) wi(ZSjAj) = jz.)i(dlmSVi) Tri(Aj)

]
Then w, is the central homomorphism associated with e i.e.
w.(z t.e.) = t.. Indeed, elements of Z(E.) act on V. as scalar
i i3 i S i
matrices, and the value of W on such an element is obviously its
eigenvalue on Vi' Moreover, as Aje ER and Z(ER) ®R S = Z(ES),

W induces an algebra homomorphism ﬁi : Z — F, where
(29) Z = (Z(EQ) + Epm /Egn = Z(Ep) /Z(Ep)™

by Proposition 1.12.2. Finally, Z is an artinian algebra and

S

Ei(J(Z)) = 0 obviously, so Bi induces an algebra homomorphism
Z13(2)) ~ Z(EF/J(EF)) —> F  with the following property: Let

€y --+» £ be the block idempotents of Ep and denote the
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corresponding elements of Z/J(Z) by (Eq} Then ;1(5 ) =1 if

eqei = e 0 otherwise. In particular,

Proposition 12.13. The central primitive idempotents e and

B of Eg lie in the same block if and only if Wy and i are equal to

each other on Z(ER) modulo (7).

For results relating properties of permutation modules to the

cohomology of G and its subgroups, see Scott (1976).

13. Examples

We are now ready to determine the Loewy structure of the
p.i.m.'s of SL{2, 4) in characteristic 2, as promised in Example 1 of
Section I.18. This goes back to Alperin (1972), the first paper to deal
with this type of guestions. For a detailed discussion of the structure
of the p.i.m.'s of all simple groups with a dihedral Sylow 2-subgroup,

see Erdmann (1977a).

Example 1. Let G = SL(2, 4) and let F be a field of
characteristic 2 containing GF(4). Let U € Sylz(G) and let T be
a complement in H = NG(U) to U. Then H = A4 and F[H] has 3
isomorphism classes of simple modules, all of dimension 1, which we will
denote by Il' 1 and 1. Note that they are the simple F[T]-

modules. It immediately follows from Corollary 1.9.6 and Example I.10.3

that the corresponding p.i.m.'s of F[H] have Loewy series

(H 11 1
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Recall from Example I.18.1 that F[G] has 4 isomorphism
classes of simple modules, I, 21, 22 and 4.
For convenience we will denote the Brauer character of a

module M by M. The character tables now show that

_ _ % o _*
(2) ZHH = 22v‘H: 1+1 ., 4v‘A: Z-Il+l+1

As 21 and 22 are algebraically conjugate and their
restriction to H cannot be semi-simple, it follows that the Loewy series

of the restrictions are
(3) 20 0= x s 2 = , 4, =P

without loss of generality where the last assertion follows from the fact
that 4 1is projective.
A vertex of I is U while 1 1is a vertex of 4. As for

2 and 2

1 > the dimension only tells us that the vertex is of order 2

or 4. Now we might cheat and say that 21 and 22 restricted to U

are just the representations

(4) {{é Pole GF<4)}

and its algebraic conjugate, which shows that U is a vertex as other-
wise the modules would be induced from a subgroup of order 2 by
Green's Theorem 11.10. Hence Green Correspondence asserts that U is

a vertex of 21 and 22.

We might also describe the indecomposable F{H]-modules

with Z2 as vertex. We claim there is exactly one such module. Indeed,

+U
if 1 € U is an involution, then I<T> U is indecomposable, and its
t

inertial group in H is U. Thus I<T> H is indecomposable. Using
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the Nakayama Relations we find that its Loewy series is

*
5 Il 1 1*
Il 11
Next we compute that
_* - = -
() O T8 17 43
1 2
s Ed * *
By Nakayama, (19, 2 )G = (2,,1 $G) =F, and (1 )6 - (1$G)

+G * 4G . . .
Thus 1 and (1) are indecomposable with Loewy series

22 2]
(7 I 1
21 22
Ye
We may now describe ( ,) ~. As U is T.I, Green
1

Correspondence yields that this module is 21 @ P, where P is

projective. Now (7) yields that P = P and it follows that PZ , and

%2 2
P2 have Loewy series as claimed in Example I.18.1. As
1
Exté[c](l, I) = 0 by Corollary I.10.13, the structure of PI is then

completely determined by Corollary I1.9.11.
We leave it to the reader to chec'k that the Green Corre-

spondent of the F[H]-module with Z2 as vertex has Loewy series

(8) 2.2

which consequently is a trivial source module.
For a number of examples of the Loewy structure of the
p.i.m.'s of some simple groups, see Benson (1983a & b), Erdmann (1977a),

Landrock & Michler (1978 & 1980) and Schneider (1983b).
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Example 2 (Illustration of Corollary 2.9). Recall from
Example I.18.1 that SL(2, 4) has an irreducible character 3 with the
property that if (F, R, 8) 1is a 2-modular system and GF(4) €F,
then ¥ has R-forms A and B which reduced modulo 2 have
Loewy series as in (7) above.

We see that (A, X)G = F 1is generated by the identity, and
thus (A, 1?\_)(1; = 0 as predicted in Corollary 2.9. Also, (A, E)(; *F

generated by the map which sends the head 22 of A to the socle of

B. However, this map obviously factors through the injective hull P

G
1

2)

of A. Thus (A, E)G = (A, B) Thus Corollary 2.9 cannot be

improved.

Example 3 (Benson, Damggrd (1983)). Let G = acting

g
in the usual way on {1, ..., 8}. Let . be the set of unordered
triples of {1, ..., 8}, Let H be the stabilizer in G of the triple

X

A =1{6, 7, 8}. Thus H = :5 :3.

Let us describe the corresponding permutation modules in

characteristic 0 and 2. As we saw in Section 12, the orbits il of G

on & x A corresponds to the H-orbits on 4. It is easy to see that

H has 4 orbits on . consisting of all triples intersecting X in

3, 2, 1 or 0 points, ;l(X), (X). We compute k, =1,

g 1

k, =15, k, = 30 and k4:10.

Next we describe the basis {Al' R A4} of Ep: A is

the identity and for Y € 4, AZ(Y), A3(Y> and A4(Y) is the sum of
all triples intersecting Y in 2, 1 and 0 points. Next a minor

calculation will show that in the left regular representation of E the

R’

matrices of AZ' A3 and A4 are



0 15 0 0 0 0 30 0 0 0 0 10

1 6 8 0 0 8 16 6 0 0 6 4
(9) , )

0 4 8 3 1 8 15 6 0 3 o 1

0 0 9 o 0 9 18 3 1 6 3 0

(Note that the sum of each row of Aj is ki)' Next we observe that

these matrices commute. Thus ER is commutative and the irreducible

representations w of E are l-dimensional. Let Vi be the

| S| S
module corresponding to e Then uj(Ai) = Trj(Ai) by Sec. 12, (20),

and the corresponding idempotents e are simply the eigen-

R 64

vectors with eigenvalues Trj(Ai) of Ai' We compute

Trj(A.l) e, e, ey €y
“q 1 15 30 10
w 1 7 -2 )
(10) :
~3 1 1 -5 3
~y 1 -3 3 -1

Notice that if ES is not abelian it can be quite a task to
find Trj(Ai)l

By Proposition 12.13, (10) above shows that E has pre-

R
cisely two blocks and the block idempotents are eyt e, and €3 toey.
Proposition 12.11 allows us to compute the dimensions of the
irreducible constituents of lll_IG, where 1 is the trivial character.
They are
(11 1, 7, 20, 28

Thus if IH is the trivial F[H]-module, IHG is the direct sum of 2



188

indecomposable modules of dimension 8 and 48, and each module has
an endomorphism ring of dimension 2.
Finally we note that Proposition 12.11 yields an expression of

the ej's as linear combinations of the A.l's.
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CHAPTER III. BLOCK THEORY

1. Blocks, defect groups and the Brauer map.

The approach to the theory of blocks in this and the following
section is inspired from Alperin and Brou€ (1979). Only, we make the
setup a little more general to prove some of Brauer's Main Theorems and
the main results of Scott (1973) on endomorphism rings of permutation
odules at the same time (see Damgard (1983)). The reader will hopefully
find that the similar nature of the approaches in the present and the
previous chapter makes the results very compatible. For an even nore
general setup, we refer to Puig (1981), where a number of the main results
in the present as well as the previous chapter are proved at the same time.

0f course the majority of the results in many of the sections
of the present chapter really goes back to Brauer. But it has been
essential for us to present this from a quite different angle, which will
allow us to advance further in certain directions.

In the following, G will be a finite group and 0 a
principal ideal domain at least fcr a start. Moreover, A will be an
f-algebra with a basis 4, which is closed under multiplication, on which
G acts such that (xy)g = (x)g(y)g for all x, y & A. The situations we

have in mind are

i) 4 1is a normal subgroup of G (including G itself as

the most important case) and G acts by conjugation

ii) A = (63,30), where G acts on the set ¢ and 60 is

the free 6O-module with the elements of 5 as a basis. As the basis &
i A= {8 - § =

for A we may pick { xy}x,yedl’ where xy(x) y while

5Xy(z‘ =0 for z # x, which admits a natural action of G.

Recall from Chapter IT, Sectioun 2, that
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G ,
(1) A :={aeA (a)g = a}.

The set of orbits of G on A 1is denoted by Cl(G|&). For Ai € Cl1(c|r),
set [Ai] = L x . Thus
X € Ai

(2) aC - spang{[£,116; € C1(Glw)}.

We now have all the results of Chapter 11, Sectien 1, at our hand. To
refresh our sweet memories, we restate Theorems II.1.7, II.1l.8 and

. H
Corollary II.1.10. Recall that if H <G and a & A", then

. G
Tr%(a) = I (a)g and TrG(AH) is denoted by A .
E H
g € H\G

Proposition 1.1. Let H, K < G. Then

i) Let aeg AK. Then

L Tr i ((a)gi)

= -1
gie K\G/H gi KgiF\H

(3) Tr§<a>

i1) Let a € AK, b € AH. Then

@) Tr§<a> Try(b) = 5 r © ((a)g;b)

-1
g;€ K\C/H  g."Kg NH

iii) A7 is an ideal in A°.

Definition 1.2. Let Ai € C1(GlA). By a defect group D(Ai)
of Ai on G, we mean a Sylow p-subgroup of the stabilizer CG(x) in G
of some x € Li. Thus the defect groups of Li in G form a G-conjugacy
class.

Lemma 1.3, Let % =F be a field of characteristic p and

let H < G. Then

(5) {le;1]2,€ €16

£),0(L,) < H
G

. . G

is a basis for AH

Proof: Let 4, € €c1(¢'a), and let o= U L., disjoint



union, where Aij € Cl(Hj{p). Let x..€& A.. . Then

ij = "ij
H ; H
- Tr D},
(6) A = Spang Cylx; ) NH G5
and thus
, ¢ H
(D Ay = Spangl Ierc e p) B (03

’C (x..)1

1

= Spany {*ET;c—)Jn_HT L6 03y

SpanF{[;iJ\D(Ai) % H}

as char F = p.
C e . G .
We now turn to the primitive idempotents of A . We continue

to let % = F be a field of characteristic p.

Lemma l1.4. Let e & AG be a primitive idempotent. Then there
exlsts a p-subgroup D of G such that for any subgroup K of G,

e € Ai if and only if D < K.
G

G
Proocf: By Lemma 1.3, A = Ai for P €& Syl (G). Now choose

D<G with |D| minimal such that e & A;. Assume e & AK for some K <G. Then

(8) e = e2 € z A ¢

g,€ D\G/K g Dg.NK

by Proposition 1.1 1i). Hence e € A -1 ¢ for some 1 by Rosenberg's
g; Dg.NK

Lemma 11.3.9. By choice of D, g;ngi < K then. Choosing K = P we

furthermore see that D must be a p-group.

Definition 1.5. Same notation as in Lemma l.4. Any such group
D is called a defect group of e or eA in G. Thus the defect groups
of e in G form a G-conjugacy class. If |[D| = pd, then d 1is called

the defect of e 1in G.

Corollary 1.6. Same notaticn as in Lemma 1.4. Let D be a

G
defect group of e. Then Z(eA) = eAp
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G
Proof: As Z(eA) = eZ(A) and e g A, , we have that

G . . . .
Z(eh) C eAD . The other inclusicn is obvious.

G .
Lemma 1.7. Let e € A be a primitive idempotent with D as

defect group in G. Then e

5, ai[Li], where the sum is over those

Ai € Cl(G!Ai) with D(C;) < D. Furthermore, there exists a 4, with
G

a. # 0 and D(AO) D.

0 G
Proof: The first part follows from Lemma 1.3, which also shows

G G , '
that e g€ io AD(Ai)' Thus e € AD(LO) for some Lo by Rosenberg's

Lemma I.3.9, which shows the last part.

Our next tool is the so-called Brauer map. Again the idea is
Brauer's but we shall need a slightly more general setup (See Broué (1979).
For an even more general setup, see Green (1978a) or Puig (1981).) First

we observe

Lemma 1.8. Let P

IS

G be a p-group. Then

(9 A

1}
i
D
¢
g

where AP is the set of fixpoints of P in ..

Proof: As FAP is spanned by the fixpoints of P on A and
L Ag by the other orbits, the sum certainly is direct by Lemma 1.3.
R<P
Definition 1.,9. Let ¢ an arbitrary principal ideal domain.
The €-linear map BrP tA > 6AP is defined by

X if x € AP

(10) BrP(x) = {

0 otherwise
and extended linearly.
Again we return to the case where © = F 1s a field of

characteristic p.

Lemma 1.10. Let P <H <G, P a p-group. Then
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(11) Ker(Br_) N AH =
P
Q
P

TALA ™
L om

Proof: It suffices to consider the case H = G, obviously.

Now, AG = A1 [©] A2 , where

A = SpanF{[Li]'\Aie CL(G|&)y, P é D(Ai)}
(12)
A, = SpanF{[Ai]\Ai € c1(G|a), P é_D(Ai) .

Thus A S;Ker(BrP), while the restriction of Br, to A, 1is injective.

2 P 1

Hence A2 = Ker(BP) and we are done by Lemma 1.3.

In particular,

Corollary 1.11. The restriction of BrP to AP is just the

. . . P . .
projection onto FAP with kernel z AR , which is an algebra
. R<

homomorphism. P

Proof: The first part is an immediate consequence of
Lemma 1.10, while the last part follows from the fact that z AP is an

. R <P
1deal.

Corollary 1.12. let e € AG be a primitive idempotent and D
a defect group of e in G. Let P < G by any p-group. Then

BrP(e) # 0 if and only if P < D.
G

Proof: We must show that e &€ Ker(BrP) if and only if
P £ D. If BrP(e) =0 it follows from Lemma 1.10 and Rosenberg's

G
Lemma II.3.9 that e € Ag for some Q < G with P £ Q. But then
G
D <Q by Lemma 1.4 and thus P £ D. The converse follows from Lemma 1.6
G G
and the definition of Br.

Let us next jistify why we have worked solely in characteristic
p. Let (F,R,S) be a p-modular system, let A be an R-algebra with
basis 4, with G acting on A, and set & = A/Am. It is then no longer
possible to prove Lemma 1.3 as stated. Indeed the proofs show that we have

to allow linear combinations of other orbit sums as well. However,
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whenever the sum of an orbit, whose defect groups are not G-conjugate to a
subgroup of H, occurs, the coefficient will lie in (w). This
corresponds to the fact we observed in Lemma II.2.10. Likewise, the Brauer
map restricted to AP is no longer an algebra homomorphism, simply because
the decomposition in (9 ), as just pointed out, no longer is direct.
Nevertheless, we may easily transfer the idea of defect groups of

idempotents in A to those in A, which we proceed to do:

Lemma 1.13. Let H < G, let Eelﬁi be an arbitrary primitive
idempotent, e & AH a corresponding idempotent by Theorem I.11.2i). Let

K < H. Then e € Kﬁ if and only if e € AE

. - - . H
Proof: Obviecusly, e € AK if e € AK , as e maps to e
. . - H H
by the canonical map. Conversely, if e € KE, then e g AK + A 7T, and
thus e € AE by Rosenberg's Lemma II.3.9, as obvicusly e g AHT
N

We may therefore extend Definition 1.5.

Definition 1.14. Same notation as in Lemma 1.12. The defect
groups of e are defined as the defect groups of e.

Let us now see how this relates to projectivity.

Lemma 1.15, (Scott (1973)) Let € equal F or R, and

e

let M€ Me(G) be an indecomposable trivial source module, say M'I
where H < G and IH is the trivial <2[H]-module. Set A = (I;G, I;G)
and let e € AG be an idempotent corresponding to M (cf. Theorem T.1.4).
Let D be a defect group of e. Then D 1is a vertex of M.

Proof: As M is a direct summand of I;G, e € Ag if and
only if (M,M)G = (M,M)ﬁ which by Corollary IT.2.4 is equivalent to M

being K-projective.

Lemma 1.16. (Green (1962a)) Let & equal F or K, and let
M E Me(G) be arbitrary. Let e € S[G]H be a primitive idempotent for
some H < G. Let P < H be a p-group with e € (E[G])g. Then Me 1is

P-projective.

. P .
Proof: Choose a € 3[G] with e = Trg(a). Then m > me
induces the identity on Me, while m > ma is an ¢[P]-homomorphism. Thus

this result follows from Corollary II.2.4 as well.
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Theorem i.17. Let e be a block idempotent of F[G]. Then

e is of defect 0O 1if and only if eF[G] 1is a simple algebra.

Proof: 1If e 1is of defect 0, then any eF[Gl-module is
projective by Lemma 1.16, and thus eF[G] 1is a simple algebra.
Conversely, assume eF[G] is a simple algebra and let E be the simple
module of eF[G]. Let G act on F[G] by conjugation. Then
eF[G) = (E,E) ~ E g E*, which is projective. Hence
z(efFlcl) = (E & E*)G =~ (E @ E*)§ , and thus any element in Z(eF[G]),

including e 1is of the form Iylg = L g_lyg for some vy € eF[G],

geG g€
which proves that e 1is of defect O.

Remark: We recall that the blocks of F[G] which are simple
algebras, are completely determined by the character table of G if F
is a splitting field, as discussed in Corollary 1.16.8 and

Proposition 1.16.1.

2. Brauer's First Main Theorem.

We continue with the notation and assumptions of the previous
section. Only, this time we work solely with coefficients in F. As most
of our results deal with idempotents, we automatically have the

corresponding results in characteristic O.

Lemma 2.1. Let P < G be a p-group, set N = NG(P) and let
a € AP be arbitrary. Then

(1) BrP(Trg(a)) - TrE(BrP(a)).

. N N
In particular, BrP(TrP(a)) = TrP(BrP(a)) and

G PN
2 = R
(2) BrP(AP) (F2),
Proof: By Proposition l.l1.i) and Lemma 1.10,

G N N - . .
BrP(TrP(a)) = BrP(TrP(a)), as TrR((a)g), where R = g ng N N, 1is in
the kernel of BrP if g€ N. However, as LP and A\AP are both

. . . N N
N-invariant, it follows that BTP(TrP(a)) = Trg(BrP(a)).
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Lemma 2.2. Let P A G, P a p-group, and let eg AGl\ FAP

be a primitive idempotent with D as defect group. Then P < D.
Proof: By Lemma 1.7.

We now need the following well-known result for artinian
algebras (or rings). Let A be an artinian algebra, e, f primitive
idempotents. We then say that e and f are conjugate if there exists a
unit u € A such that e = u_lfu. Thus e and f are conjugate if and
only if eA = fA, as we saw in Theorem 1.3.,12. Now, if furthermore B
is an artinian algebra and ¢ : A+ B 1is a surjective homomorphism, then
either ¢(e) = 0 or &(e) 1is primitive, and ¢ 1induces a one-to-one
correspondence between conjugacy classes of primitive idempotents of A
not in the kernel of ¢ and conjugacy classes of primitive idempotents of

B. 1Indeed, by Theorem I.3.14 we may assume that A and B are semi-

simple, in which case the observation is immediate.

We may now prove the first main result.

Theorem 2.3. Let P < G be a p-group and set N = NG(P).

The Brauer map

) . .G PN

3) Bry ¢ A, > (FL7),

induces a bijection between conjugacy classes of primitive idempotents in
G . . . P

AP with defect group P in G and conjugacy classes of primitive

idempotents in (FAP)g with defect group P in N,

Proof: We have seen that BrP is a surjective algebra
. G PN C
h ] .
omomorphism from A onto (FA )P Let e € AP be a primitive

idempotent with D as defect group in G. Then D < P by Lemma 1.3 and
G
thus BrP(e) # 0 1if and only if D = P by Corollary 1.12. Thus the
G

result follows from the classical result above, once we show that if
BrP(e) = f #0, then f has defect group P in N. However, by
definition of BrP and Lemma 1.6, the defect group of f 1is contained in
that of e, i.e. in P, as P A N, while the other inclusion follows
from Lemma 2.2.

In the case where A is the endomorphism ring of a permutation

module, this is Theorem 3 of Scott (1973). In the case where A =F[G], this is



Brauer's First Main Theorem 2.4. (Brauer (1956)) Let P <G

be a p-group, and set N = NG(P), C = CG(P). Then the Brauer map

. G N
4) Br, (F[G])P > (F[C])P

induces a bijection between block idempotents of F[G] with P as defect

group in G and block idempotents of F[N] with defect group P in N.
In particular, we have implicitely stated that
Lemma 2.5. Let P A G be a P-group and let e be a block
idempotent of F[G], with D as defect group in G. Then
G .
e € (F[CG(P)]) . In particular, P < D.

Proof: Set A = F[G]. By Lemma 1.8,

(5) 2(a) = (Fleg® D’ e ¢

P
aA. 0 Z2(a))
R R

N3

P

Also, as P acts trivially on any simple A-module and [P : R is a
power of p for R < P, AES; J(A) and thus

G
(6) z(a) < (Fle (®)D)7 + J(z(a)

As e 1s an idempotent, this forces e € (F[CG(P)])G. Thus D < P by
Lemma 1.7.

As F[G]G = z(F[G]), Theorem 2.4 follows.

Brauer's First Main Theorem reduces the problem of determining
which blocks of the group algebra F[G] have a certain p-subgroup D as
defect group to the similar problem in F[NG(D)]. We therefore proceed to
investigate this problem in the following section.

It will be of interest to take a closer look at the restriction

of the Brauer map Br to the center of any block B for an arbitrary

P
but fixed p-subgroup P of G. Denote the block idempotent corresponding
to B by B. We have already seen that BrP(Z(B)) =0 wunless P 1is a

subgroup of a defect group of B.

Notation. Let J(l,...,}(k denote the conjugacy classes of

G. Recall that for A = F[G], Ag is spanned by {[J(i]|D(J(i) < P}.
G
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Set ASP = I AG and let A?P be spanned by
R<P

{[X.1|p{(X.> = P}. Thus

i i L
‘ G _ .G G
{(7) Ap = Agp @ A
In particular,

G G G

(8) ApB = A_pB + ALB .

The following result goes back to Rosenberg (1961).

Lemma 2.6. With the notation above,

i) RKer Br, n A§§ = AiPE ‘
G, ,,G G Ne(®)
ii) A B/A B = Br (A ,B) = (Flc.(p) ], Br,(B)
No(P)

t

? (Fle ()] b,

where the sum is over those blocks bi of F[CG(P)] for which
b.Br_(B) # 0.
-1 P~ NG(D)N

11i1) BrD(Z(B)) = (F[CG(D)])D B, where D 1is a defect
group of B and B is the block of F[NG(D)] corresponding to B.

G
Proof: By Lemma 1.10, Ker BrP 2] Ag = A<P' As
G G N
Ap NB = A pB, 1) follows

The (first) isomorphism of ii) is by i) and (8). As
P . . . . ..
BrP T A > F[CG(P)] is a homomorphism, the first equality of ii) follows
from Lemma 2.1, and the second simply from the fact that BrP(E) = ZEi

with the notation above, as BrP(AgE) is an ideal.

Definition 2.7. Brou€ (1979), Olsson (1980) The dimension
G . . ..
over F of AEE/ASPE, or BrP(A=P§), is called the multiplicity of P

as a lower defect group of B. We will return to this in Section 10.

Brauer's original definition of the Brauer homomorphism was
the following. Let P < G be a p-group and let PCG(P) <H<G., We
then define Brp : Z(¥[G]) » z(F[H]) by setting BrP([J(]) =[X]lQ CG(P)
for any G-conjugacy class X . Thus the Brauer homomorphism is simply the
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restriction of the Brauer map to Z(F[G]), and it follows from
Corollary 1.10 that this map indeed is a homomorphism.

So a natural question arises: Why can we replace Z(F[H])
with (F[C])N and still get Brauer's First Main Theorem? The answer is

provided by

Osima's Theorem 2.8. (See Osima (1955) Let e & F[G] be a

central idempotent. Then e 1is a linear combination of p-regular elements.

Proof: (Passman (1969)) We may as well assume that e 1is
primitive as a central idempotent., Let e = = Qgg and assume
g€GC

Qg # 0 for some g. Let g = gpg' be the p-decompositicn of g and
assume gp # 1. Let D = <gp>. Then BrD(e) # 0 1s a central
idempotent of F[CG(D)]. So it suffices to prove the theorem for
G = CG‘D).

Let |G = pam where (p,m) = 1 and set q = ord(g'). Then
there exists n > a such that pn = 1 mod q. Now

n
v_]-)p e = g'—le

-1
(9) (2 e)P = (e
However, recall from Lemma I1.13.4 that if S(F[G]) denotes the vector
space in F{5] spanned by elements of the form xy - yx for x, y € G,

then

n
(10) e teP - : we TP =D P ThoP
XEG xec *

mod S(F{G]). But (g'_lx)pn is a p-regular element for all x, while
(9) shows the coefficient of g, in g'_le is g # 0. Consequently,
there exists h, k € G with g = hk and hk - kh # 0. However, as
gp € Z2(G), gp = h_lgph = kh as well, a contradiction. Thus gp =1 and
the theorem follows.

It is not entirely clear off-hand that a similar result holds
in R[G]. However, it suffices of course to handle the case where § is

a splitting field of S[G] and this is easy to see directly:

Theorem 2.9. (Osima (1955)) Let S be a splitting field of
S[G] and let B be a p-block of G. Denote the irreducible Brauer

characters of B by ¢l,...,30 and the characters of the corresponding
0
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p.i.m.'s by ¢ .,&, . Let e be the corresponding block idempotent

1 xo
of R[G]. Then
1 i -1 1 ‘o -1
(11) e = PoCE .16 ig g = POz 9.1, g
G g€ G i=1 1 1 G gf—.GO i1 1 1

Proof: Let LSERRRETON be the irreducible ordinary
0

characters of B, and let e, be the unity of the Wedderburn component

1
of S[G] corresponding to x; - Then
k k
° 1 ° -1
= T = T Y
(12) e : e; =—gr L . )\i(l)xi(g )g

g€G 1i=1

and (11) follows from this and Lemma I1.15.7.

3. Blocks of groups with a normal subgroup.

This section is mainly inspired from Alperin and Brou€ (1979)
and Landrock {198lc). Notice however again that some of the results are
much older. To prove Theorem 3.5 we use an idea of Kllshammer (1980).

Throughout the section we will assume that 1 # H 1is a
normal subgroup of G and later we will furthermore assume that H =P

is a p-group.

Notation: Whenever B 1s a block of some algebra, the

corresponding block idempotent will be denoted by B.

Definition 3.1. Let bH be a block of F[H]. By the

normalizer or inertial group N(bH) = NG(bH) of bH in G we mean the

subgroup of G fixing EH by conjugation.
Lemma 3.2. Let bH be a block of F[H]. Then
i) EH is a central idempotent of F[h(bH)]-
.. G . .
ii) TYN(bH)(EH) is a central idempotent of F[G].

Assume furthermore that H =P 1is a p-group and let b be

an arbitrary block of F[G]. Then

iii) be (Fle,@D°,
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iv) Let D be a defect group of b in G. Then P < D.

v) b is of the form given in ii) for bH satisfying

b EH # 0.
vi) EH is a block idempotent of F[N(bH)].
Procf: 1) and 1i) are trivial, iii) and iv) have already been
proved in Section 2, v) follows from ii) and iii). Finally, that b is

2
a primitive idempotent in F[N(bH)] fellows from the fact that any block

idempotent of F[N(bH)] lies in F[CG(P)] by iii) where it is primitive

as such.
The connection between the algebra structure of bH and that
G . - . P
of TrN(bH) \EH)F[u] is easy to describe:

Lemma 3.3. (KUlshammer (1980)) Let & equal F or R, let
bH be a block of £[H] and let b be the sum of blocks of ([G] such

that the unity of b is b = (b,). Let s =[G : N(bH)‘. Then

G
Tr,,

N(by) A
(1) b = Mats(gﬁe[N(bH)]).

. oAl . . .
Proof: Set A Eﬁv[x(bﬁ)]. Then V[G]E‘H is a right

A-module and free as such of dimension s. Thus
(2) (c[61b,,,6061b )% = Mat (&)
-1’ —H s

as A':(A,A)A. However b maps into the former by left multiplication,
and this map is an injective homomorphism. Indeed, if b % yEH = 0 for
all y e 2[6] and some x € 8[G], then b xb =bx =0, as

b =Tr

G
b)Y, . .. A _
N(bH) ( H) Finally, it is onto as (1-b)8[Glb 0 and 6[Glb

is a direct summand of 6[G] as a left ideal.

Definition 3.3, Same notation as in Lemma 3.3. Let
G A
TrN(bH) (EH) = Zgi , where Bi runs through blocks of &[G]. Then Bi
is said to cover bH

As a consequence of Lemma 3.3, we get
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Theorem 3.4. Same notation as in Lemma 3.2.

There is a one-to-one correspondence between blocks Bi of

6[N(bH)] covering b, in N(b,) and blocks B, of 6[c) covering by,

H
in G, given by

(3) B, = Ir

G ~
5 % Ty B4

(4) B. = Mat (B.)
i s i
where s = |G : N(b_)I.
H
Proof: By (1), and the fact that blocks are orthogonal,
(5) 3B, = Mat (@B,) ~ @Mat (B,)
S 1 S 1

where we sum of all blocks in G respectively N(bp) which cover bH'
As Mats(ﬁi) is indecomposable, the claim follows from Theorem I1.4.4.

Theorem 3.5. (Fong (1961), Reynolds (1963)) Let by be a
block of B[H] and let B resp. B be corresponding blocks of
F[N(bH)] resp. 3[G] which covers b, Denote the corresponding p-blocks
of N(bH) resp. G by B resp. B. Let K =F or S according to
whether 6 equals F or R. Then

i) Let XN be a simple K[N(bH)]—module in B. Then NTG

is a simple module in B and this sets up a one-to-one correspondence

between the sets of simple modules in B resp. B.

ii) B and B have identical decomposition matrix and

Cartan matrix w.r.t. this correspondence.

iii) B and B have a defect group in common. In particular,

N(bH) contains a defect group of B.

Proof: TLet M be a simple B-module. Then ME # 0 by
Theorem 3.4 and consequently MEH # 0. Let X be a simple
K[N(bH)]—submodule of Mb_.. Then obviously the inertial group T of X

—H
is contained in N(bH), and it follows from Theorem IT.11.1 that
G
M= N for some K[N(bH)]—submodule N of MEH containing X. Hence

N is simple as well and N lies in B. Conversely, if N 1is a simple
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i B ; 4G
K[N(bH)]—module in B, we let M be a simple submodule of N ~. Then
again M 1lies in B by Theorem 3.4 and the argument above shows that in
A ~
fact M = N‘G. Finally, as B and B have the same number of isomorphism

classes of simple modules by Theorem 3.4, i) 1is proved.
1i) 1is an immediate consequence of 1).

ii1) By Theorem 3.4, (3), a defect group D of B is
contained in some defect group D of 3B. Aas E§_= E, Proposition 1.1
together with Lemma 1.4 yield equality.

As we do not wish to discuss the structure of group algebras
over p-solvable groups in particular but refer to Feit (1982) or
Blackburn and Huppert (1982) for this we restrict ourselves in the
following to the case where H = P 1is a p-group. We point out that the

rest of this section only uses Lemma 3.2.

Theorem 3.6. Let 1 # P be a normal p-subgroup of G, and
let b be a block of F[G]. By Lemma 3.2, let b, be a block of
F[C,(P)] such that byb # 0. Then

i) (Landrock (1981c)) Let Q € Sylp(N(bP)). Then the
defect groups of b in G are the G-conjugates of the defect groups of

1 {
bP in CG\P)Q.

ii) Let Dy be a defect group of bP in N(bp). Then

a) Dy is a defect group of b in G,

b) D, =Dy N CG(P) is a defect group of bP in PCG(P).

iii) (Olsson) Z(DN) < Dp
Proof: 1ii) a) follows from Theorem 3.5 iii) but we will give
a short direct proof: Let D be a defect group of b in G. Then

DW <D by Lemma 1.7 while Lemma 3.2 v) asserts that the other inclusion
° G

holds.

Next we let UQ be a defect group of bP in CG(P)Q. Again,
assume DQ < DN by Lemma 1.7. Moreover, we may assume that
DN E»CG(P)Q by choice of Q. We must show that DN < DQ. Now let

by = ZaC[C], sum over C.(P)-conjugacy classes in CG(P). Let C, be

one with QCO # 0 such that D(CZ) = N(bP) DN’ where C2 is the
N(bP)—conjugacy class containing CO’ again by Lemma 1.6. Bence the
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CG(P)Q-conjugacy class C1 containing C_. has D as defect group as

0 N
well. Furthermore, as EP is central in F[CG(P)Q], the coefficient of
[Cl] in the expression for EP in F[CG(P)Q] is JCO , and thus
D < D as claimed, which proves 1).
N T Q
N(bP)

Again, Lemma 1.6 yields that a defect group of bP in CG(P)

is N(bP)-conjugate to a subgroup of D,.. Thus it may be picked as a

subgroup of DC' But then Lemma 1.7 in ?act guarantees equality, and
ii), b) is proved.

Lemma 3.2 v) and b) yield that PDC is contained in some
defect group of bP in PCG(P). On the other hand

C(P) PC_(P)
(6) by € <F[CG<P)])DC c (FlpC (P D),

and thus PDC is a defect group of bP in PCG(P).

iii) follows immediately from ii) b) and c).

Corollary 3.7. ({Brauer (1956), Hamernik and Michler (1972))

Same notation and assumption as in Theorem 3.6. Assume furthermore that

N(bP) : PCG(P)[ is prime to p. Then D Dy -

In the following we set G = G/P and denote by 71 : F[G] » F[G]

(1]

the algebra homomorphism induced by the canonical homomorphism G + G.

Lemma 3.8. Same notation as above. Then
i) Ker 1 1is a nilpotent ideal in F[G].

ii) Let X be a conjugacy class in G such that
XnNncg(®) =¢. Then [X] €Ker 1.

Proof: 1) Let A be the augmentation ideal of F[P]. Then
Ker 1 = F[GJa = AF[G] (cf. Lemma I.11.15), and thus (Ker 1) = F{G]a'.

But A = J{P), as P 1is a p-group, and thus A 1is nilpotent.

ii) 1f X O CG(P) = ¢, then any orbit X of P on X has

length a power of p. However, if x € X, then T([X]) = (X|x = 0 where
[X] = I y and thus T([K1) = 0.
yE€X

In particular, there is a one-to-one correspondence between
primitive idempotents of F[G] and those of F[G]. However, it is not

always true that there is a one-to-one correspondence between central



205

idempotents. In order to ensure this, we need an additional assumption,

but an assumption we fortunately can afford by Lemma 2.5 and Theorem 3.6.

Lemma 3.9. Same notation as above. Assume furthermore that
G = PCG(P). Then T induces a one~to-one correspondence between block

idempotents of F[G] and those of FI[G].

Proof: We shall give a straightforward module theoretic proof
of this statement (See Landrock (198lc).). Let b resp. {Fi}i be blocks

of F[G] resp. F[G] such that T(b) = E, . If r > 1, then by our

1

|

t=
initial definition of blocks in Chapter I, Section 4, there exists simple

bi -modules Wi , J=1,2 for suitable ij < r and an indecomposable

] J
F[G]-module W satisfying

\7) 0+W -~ W~>W ~+ 0.
ol )

Let z € Z(P) and consider the F{G]-endomorphism bz :w > w(l-z) of W.

As z 1is a p-element KerQ # 0. Thus Ker, equals wi or all of W.
z te 1
But in the former case, W, = hnéZ(: W, a contradiction, as Wi is the
1

only non-trivial submodule %f W. Thus Z(P) acts trivially on1 W. Using
induction, we therefore obtain that P acts trivially on W. Hence W

is an F[Gl-module, a contradiction.

Remark. Notice that this proof just uses the basis

properties of blocks.
Using the same technique, we may also prove

Lemma 3.10. Same notation and assumption as in Lemma 3.9,

Denote the Cartan matrix of a group algebra F[H] by C Then

0

(8) ¢ - lpic= .

Proof: Using induction on [P| 1it suffices to consider the
case where P = <x> 1is cyclic of crder p. Let ¢i denote the
F{G]-endomorphism which maps a to a(l—x)l. The kernel of ¢ is

p-1
obviously J(F{<x>])F{G], and thus
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9) Fl6](1-x)P7Y =~ FITI.

In particular, if A 1is an indecomposable projective F[G]-module, then
A(l—x)p_1 is the corresponding projective indecomposable F[G]-module.

Moreover,

2 p-1
(10) ADA(l-x) D A(l-x)"D ... D A(l-x)
is a filtration, where
(1) AQ-0 /a0 = p-0?!
for all 1, from which (8) follows.

Lemma 3.11. Let b be a block of F[G], where G = PCG(P),
moreover Y a p-group, with D > P as a defect group in G. Then the

corresponding block b of G/P has D/P as a defect eroup in G/P.

Proof: Let 1 Dbe as above. As T(B) = E, Lemma 1.4 asserts
that if D 1is a defect group of E, then D < D/P, while the other
G/P
inclusion follows from Lemma 1.7.

Corollary 3.12. Assume D =P in Lemma 3.11. Then b is of

defect 0. In particular, b 1s a simple algebra and thus b has only

one simple module up to isomorphism.

Proof: 3y Lemma 3.11, b is of defect 0. Thus any b-module

is projective by lemma 1.16, and the rest follows from Proposition T1.9.1.

We are now ready to prove the socalled Extended First Main
Theorem which shows how defect groups may easily be determined from the
Jocal structure. Our proof of the First }Main Theorem showed a one-to-one
correspondence between block idempotents of F[G] with D as defect group
in G and NG(D)—conjugacy classes of block idempotents in F[CG(D)] with
D as defect group in NG(D). Moreover, as we have just seen, there is a

one~to-one correspondence between block idempotents of F[CG(D)] with D

as defect group in DCG(D) and block idempotents of F[DCG(D)/D] of defect
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0. Thus we are left with the following problems:

1) When does a block bD of F[CG(D)] with D as defect
group in DCG(D) have defect group D in QCG(D) where Q € Sylp(N(bD))?

2) How does one determine the blocks of defect 07

4. The Extended First Main Theorem.

We now answer the first question raised in Section 3, following

Landrock (198lc).

The Extended First Main Theorem 4.1. Let G be a finite group,

D <G a p-group. For each block b of F[CG(D)] with defect group D
in DCG(D), let Ub denote the unique simple module of b by
Corollary 3.9 and let Qb be a Sylow p-subgroup of N(b).

The Brauer homomorphism induces a one-to-one correspondence
between blocks of F[G] with D as defect group in G and
NG(D)—conjugacy classes of blocks b of F[CG(D)] with D as defect

. AQbCG(D) L
group in DCG(D) and Uy semi-simple.
Before we prove this, we derive Brauer's original version as a

corollary.

Corollary 4.2. Let D < G be a p-group and let b be a
block of F[CG(D)] with D as defect group in DCG(D). Then

i) (Brauer (1956), Hamernik and Michler (1972)) Assume
IN(b) : DC.(D)! 1is prime to p. Then the corresponding block of
F[NG(D)] (in view of Lemma 3.2) has defect group D 1in NG(D).

ii) (Brauer (1956)) Assume F 1is a splitting field of
EF[CG(D)], and assume furthermore that the corresponding block of b
in F[NG(b)] has D as defect group in N (D). Then IN(b) : DCG(D)\

is prime to p.

Proof: Let U denote the simple module of bF[DC (D)].

i) has already been observed (Corollary 3.3). However,
. . . . AN
if  [N(b) : DCG(D)‘ is prime to p, then certainly U N(B)
semisimple, as we saw in Theorem I1.11.2 i), so i) 1is also an immediate

corollary of our theorem.
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ii) As U 1is in an F[DCG(D)/D]-block of defect 0, U is
liftable by Lemma 1.16 and the fact that projective modules are liftable.
Moreover, as F is a splitting field of bF[CG(D)], dimFU divides
[Cg(D)]. In fact dimU = [P|h, where Pe Sylp(DCG(D)), P = P/D and
h is prime to p. Let_ P < Q€ Syl (N(b)), and set H = QC.(D),

H = H/D. Then dimF(UfH) = [Q/D|h. As any indecomposable component of

+H H

U has dimension a multiple of dimF(U), and of |Q/D’ as well, U
is indecomposable. (We could, of course, have quoted Green's Theorem
A . . . . =

I1.11.10.) But obviously, U E lies in the corresponding block in F[H]
and thus is simple by Theorem 4.1. However, as U 1is the only simple
module of BFIDC,(D)/D], U x =U for all x€H and thus
, AHAHH
(1) @t - @
where C = DCG(D)/D is of dimension \ﬁ : C|. Hence H = DCG(D), and
ii) is proved.

In view of our discussion in Section 3, Theorem 4.1 is an

immediate consequence of

Lemma 4.3. Let D be a normal p-subgroup of G. Set
G =G/D, and let b be a block of Co(D) with defect group D in
DCL{D). Let b be the corresponding block of F[DC,(D)/D].

Assume G = N(b). Then the following are equivalent.

i)

(k=2

has defect group D in G.

e (FIEDE .

lo}

ii)
iii) E?[E] is a semisimple algebra.

iv) Let U be the simple module in EF[DCG(D)]. Then

UTG is semisimple.

Proof: 1) and 1i) are equivalent by Lemma 3.8 and the

definition of a defect group, and 1i) and 1iii) are equivalent by

Theorem 1.17. Finally, as b is G-invariant,

(2) bF[G]

12

o @)

B(FITI4g = (BFITH4

(n)

and DFfC] = U for some n € N, as an F[C]-module, where as before
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-~ - . +G
C = DCG(D)/D. Hence bF[G] is semisimple if and only if U -, or

equivalently, U¢G is semisimple, as D 1is in the kernel of U.

Example 1. To illustrate the subtleties of the general
extended first main theorem, consider a group G = CW, semidirect product,

with C normal, C =D x K where D =~ 22 [©] 22 and K = Z3 , and

W=12,. Assume furthermore that W acts non-trivially on D. Finally,

F 1is a field of characteristic 2. Note that GF(4) 1is a splitting field
of K.

Case 1) KW = 23 , F =GF(4). Then C = CG(D) has two
nonprincipal blocks bl and b2 with defect groups D, and N(bi) = C.

It follows that G has a block b = bl + b2 with defect group D.

Correspondingly ‘N(bi) : ¢l = 1.

Case ii) KW = I F = GF(2). Here, C only has one

3’
non-principal block b. Let U be the simple module of b. As N(b) = G,
G is the inertial group of U, and W acts on F[K] ~ I @ U, where I

is the trivial F[K]-module. Thus U may be extended to an F{G]-module

U', and Ul#w is projective, as KW is non-abelian. Consequently,
U‘kG = U' ¢ U' is semisimple, so b 1is a block of F{G] with defect
group D 1in spite of the fact that [N(b) : C| = 2.

Case 1i1) KW = Z6 , F =GF(4). As OZ(G) = DW, neither
bl nor b2, with the notation of Case iz, has defect group D[.J2 If
Ui is the simple module of bi then UI‘G has Loewy series U, and
thus is not semisimple. Correspondingly, iN(bi) : ¢l = 2.

Case 1v) KW =~ Z F = GF(2). Again OZ(G) = DW so b, with

,
the notation of 11) does ngt have defect group D, and the simple
module F[C]-module U in b extends to an F[Gl-module U', but this
time U'¢w is trivial. Correspondingly, UfG has Loewy series U: ,
whence is not semisimple. Again, [N(b) : C{ = 2, but this does not tell

us anything.,

5. Defect groups and vertices.

Our next aim is to find some sort of characterizations of
blocks in terms of their defect groups. We have already seen an example

of this in Theorem 1.17. A key is provided by the following fairly
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straightforward but important result due to Nagao (1963), which will lead
us to a proof of Brauer's Second Main Theorem.
We use the notation of the previous sections. Recall that for

e a block idempotent of F[G] and P < G a p-group, ep 1= BrP(e) is

a central idempotent in F[CG(P)]. Moreover, e 1lifts uniquely to a

block idemopotent & of R[G], and if ep = Efi » where the f, 's are

block idempotents of CG(P), then all fi 's left uniquely to block
idempotents £, of R[CG(P)]. Hence éP lifts uniquely to e . So in
any case if ¢ equals F or R and e 1is a block idempotent of 3[Gl,
there corresponds uniguely a central idempotent ep in G[CG(P)],
determined as above.

Theorem 5.1. (Nagao) Let P < G be a p-group and let H be
any group with CG(P)P < H. Let e be a block idempotent and define the
central idempotent e, & 6lH] as the sum of all block idempotents f
such that fPeP # 0, where fP and ep are described above. For any

Me M6<G)’ set
(1) Me = lMe. 0 (@ Nj)

YH H i

where Nj is indecomposable. Let Vi be a vertex of Ni. Then P ¢ Vi'

Proof: Set ¢ =-¢e -~ eey. If & =0, there is nothing to
prove. Assume therefore that ¢ # 0. Then ¢ and ey are orthogonal

idempotents and consequently

(2 Me . = Me_ @ Mc
Y

- H - e s
as an €[H]-module, as ¢ € (€[G]) . Let = = % . be a primitive
r
idempotent decomposition in (G[G])H. By Lemmas 1.4 and 1.13, there exist

p-subgroups Q_ of H such that €. € (é[G])g . Moreover,
r

BrP(er) 3 (ﬂ)[CG(P)] by definition of Br, and ¢ . But then the
statement follows from Corollary 1,1l and Lemma 1.16.

As an application of this and Green Correspondence, we obtain

Corollary 5.2. (Green (1964)) Same notation as above. Assume

furthermore that M 1is an indecomposable e&[G}-module with P as a
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vertex. Then there exists an indecomposable §[H]-module N such that

i) Ni(M )

1’ %n

A
ii) M'N©

Proof: Let E(M) be the Green correspondent of M in
NG(P). Then f(M) = f(M)eP by Theorem 5.1, applied to NG(P), and

Lemma 2.5. Furthermore, if f(M) @ Xi with Xi

VHANL(B) T
indecomposable, Xi has vertex P. Let g(Xi) be the Green correspondent

in H. Then g(Xi)‘M¢H for some 1, as M has an indecomposable

VvH
direct summand with vertex P, again by Theorem 5.1. Moreover as
AN (P) AG
f(M)}Xi , we also have that M\g(Xi) . Finally, as g(Xi) has P
as vertex g(Xi) = g(Xi)eH by Theorem 5.1. Thus g(Xi) = N will do.
We are now able to characterize defect groups in term of

vertices, thereby generalizing Theorem 1.17.

Corollary 5.3. Let e bpe a block idempotent of 9[G] and
let D be a defect group of e. Then all ef[G]-modules are D-projective,

and there exists an indecomposable £[G]-module with D as vertex.

Proof: One way has already been proved in Lemma 1.16. To
prove the other way, it suffices to consider the case where D 1is normal
by Corollary 5.2 and Brauer's First Main Theorem. Let U be a simple
eF{G]-module, where e 1is the corresponding (or same) block idempotent of
F[G]. Let V be a vertex of U. Then V < D, and U¢D is a trivial

module. Let L be a source of U 1in F[V]}. Then

4D

< (Lgxh

(3) U, (L =
x € V\G/D

~
I

v xn[Q

A

But no direct summand of ((L ® x) )iD is isomorphic to the trivial

W *AD
F[D]-module unless V. = D, which forces V = D,

Furthermore, as U 1is a projective F[G/D]-module, U 1lifts
uniquely to an R[G/DJ}-module, which is projective as well and therefore
considered as an R[C]-module must have D as vertex by Lemma II.l.3.

Thus both & = F and & = R are covered.

Corollary 5.4. Same notation as in Corollary 5.3. Let M be
an ef[Gl-module. Then |P : D| divides rank (M), where D < P € Syl (G).
v - P
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Proof: By Green's Theorem, as we may assume F to be
algebraically closed (see Appendix III).

In particular, if B 1is a p-block of G and S 1is a splitting
field, let Xpoen oo Xy be the irreducible characters of B. Let
]G[ = pam where (p,g) =1, and let B be of defect d. Then pa-d

divides Xi(l) for all 1. We now introduce

Definition 5.5. Same notation as above. Let Xi(l) =
a—d+hi
P m where (p,mi) = 1. Then hi is called the height of X5

Similarly, we define the height of any generalized or Brauer

character of B.

Corollary 5.6. Let S be a splitting field of S[G]. Then

any p-block of G contains an irreducible character of height 0.

Proof: Go back to the proof of Corollary 5.3. There the
height of the character of U 1is 0, from which the statement easily

follows.

Another consequence of Theorem 5.1 is the following. (See

Juhdsz (1981), Thm. 2.)

Corollary 5.7. Same notation as in Theorem 5.1. Let N be
an indecomposable 5[H]-module with vertex P such that N = Ne,
Set

v - ("% 0 (o M)

3

where M. 1s indecomposable. Let Wj be a vertex of Mj. Then

g
W. <PNP for some € G\N_(P).
i g \N,

Proof. Let fH(N) be the Green correspondent of N 1in
NG(P) N H. Then fH(N) = fH(N)eP by Theorem 5.1. Thus
AN (P) NG (P)
U= £,(N) = £,(0 ep as well by Lemma 3.2. As any
indecomposable direct summand of U has vertex P, we only have to prove
that if U 1is an indecomposable G[NG(P)]—module with vertex P such that

U = UeP , then g(U) = g(U)e, where g(U) 1is the Green correspondent of
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of U in G, as the theorem then follows from Green correspondence. But

this follows from (1) applied to M = g(U).

Remark. This generalizes an older result due to Conlon (1964).
Theorem 5.1 also allows us to prove some of the results of

Chapter II, Section 7 blockwise:

Lemma 5.8. Let B be a block of F[G] with D as defect
group. Then B has only a finite number of isomorphism classes of

indecomposable modules if and only if D 1is cyclic.

Proof: By Corollary II.7.8, as any B-module is D-projective.

It also follows from

Corollary 5.9. (Donovan) The maximum complexity of the
indecomposable F[G]-modules in a block B of F[G] equals the p-rank of
a defect group D of B.

Proof: (Alperin and Evens (1981)) As any B-module is
D-projective, this follows from Corollary IT.7.13 once we prove that some
indecomposable B-module M has the property that cG(M) is equal to the
p-rank of D. Let b be the corresponding block of F[H], where
H = NG(D), and let N be a simple b-module. Then N has D as vertex,
as D 1is in the kernel of N, and the Green correspondent M of N in

G 1s in B by Nagao's Theorem 5.1. As MENTG and a projective
y g i PTIO)]

resolution of N 1induced to G 1is a projective resolution of NTG, it

follows that CG(M) < CH(N). Similarly, as N{MH_1 and projective modules

restrict to projective modules, cH(N) > cG(M), and thus equality holds.
T > . S it

The same argument shows that CH(N) > CD(N¢D) However, as N#D is a

trivial F[D]-module, this number equals the p-rank of D by a result of

Lewis (1968) and we are done by Corollary 7.13.

6. Generalized decomposition numbers.

Definition 6.1. Let x be a p-element of G. The p-section

determined by x 1is the set
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(1) G(x) = {g € GlgP g% g the p-part of g}

P
In other words, G{(x) 1is the union of all conjugacy classes of G with
the property that the p-part of a representative is conjugate to x. Thus
we may always choose this representative inside CG(x).

By a subsection of a block B of F[G], where F 1is a field
of characteristic P, we understand a pair (x,b) where x 1is a
p~element of a defect group D of B and b is a block of F[CG(x)]

such that Bb # 0. Moreover, if P <D and bP is a block of
G

F[CG(P)] with bPBrP(B) # 0, (P’bP) is called a B-subpair and bP is
called a root of B. The inertial index of bP is 5N(bP) : PCG(P)f.
Brauer's Second Main Theorem tells us how to compute ¥(xy)
where Y 1s an irreducible character of G, x 1is a p-element and
vy € CG(x) is p-regular in terms of the Brauer characters of roots of
the block associated with Yy and generalized decomposition numbers.
In order to see this, we simply combine Theorem 5.1 and
Proposition I1.3.6.
In the following, (F,R,S) 1is a p-modular system such that §

is a splitting field of all subgroups of G.

Lemma 6.2. Let B be a p-block of G, and denote the
corresponding block of F[G] by B. Let 3 be an irreducible character
of B.

Let x be a p-element of G and let gé& G(x) N CG(X).

Then

(2) X(g) = Ty (g)
b

where b runs through the roots of B in CG(x) and is the

b
component of Xye () in b. In particular, (g) = O whenever the
G

p-part of g 1is not conjugate to an element in a defect group of B.

Let Xyoe-e be the irreducible characters of B and let

%

Ak

x € D where D 1is a defect group of B (not necessarily different from
G

1, although of course we already have complete control over that case).

Let gl,...,gk be the irreducible characters of CG(x) and set
x



3 Xivo ) = 5 Mir b

Now, let y € CG(x) be any p-regular element. Then

(4) xi(xy) = I nirgr(xy) =7 nirerir(y)
r r
for some ord(x) 'th root of unity €,» as X [ Z(CG(x)).

Next, let o) be the irreducible Brauer characters

l)"'JOR
x
of the roots of B 1in CG(X) and let {drj} be the decomposition

numbers of CG(X). Thus

(5) Er(y) = ? drjaj(y)

Definition 6.3. Same notation as above. By the generalized

- X L
decomposition number dij we understand the algebraic integer

. Yn, ed .
1] ; irroT]

indexed by the irreducible characters of B and the irreducible Brauer
characters of the roots of B in CG(x).

We can now formulate (see Brauer (1959))

Brauer's Second Main Theorem 6.4. Let X; be an irreducible

character of G 1in the block B. Let x be any p-element, and let

vy € CG(x) be p-regular., Let ¢1,...,©2 be the irreducible Brauer
x .

characters of CG(x) and let {dtj} be the generalized decomposition
numbers. Then
oox
(6) xi(xy) =1 dij ®j(y)
J
x

where dzj € Z[m/T], m = ord(x), and dij = 0 whenever $j does not

belong to a root of B in CG(X).

Proof: By the analysis above.
This, however, is not the whole story. A lot can be said
. X
about the matrix D” = {dzj}’ as we proceed to demonstrate. Let gx

denote the Cartan matrix of CG(X).
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For A a complex matrix, A denotes the complex conjugate

t
and A the transpose.

Theorem 6.5. With the notation above,

(7 (Ex)t:{ - gx
while

X X
(8) @hH?-0

if X - x2.
In particular, any column of generalized decomposition

numbers is orthogonal to any column of ordinary decomposition numbers.

Proof: Let LARRERES 2! be representatives of the p-regular
~x

conjugacy classes of CG(x). Set

(9) K= G Gwg))s D= (@), 9T = (e ()

"

where X, Tuns through all irreducible characters of G. Then (6)

implies

(10)

<
[t}

n

>

since no blocks have roots in common. Now the orthogonality relations

yeilds
\cG(xyl)\ 0
0 \CG(xyz)\
an (@' = @@ - :
0 }CG(XYQ )]
X

on the other hand, if V¥ = (gi(yj)), where gl,...,gr are the

irreducible characters of CG(X), then



[c,(rp) ] 0
0 {cH(yz)l
(12) Ty = (T -
) ) o 0 ‘CH(ny )‘
X

where H = CG(x). However, the right hand side of (11) and (12) are
identical. Thus the left hand sides are as well. But éx is invertible
as we saw in Theorem I1.15.9, and thus (7) follows. Exactly the same

argument will show (8).

Notation. The number of irreducible characters in a block
B of G 1is denoted by k(B), the number of irreducible Brauer

characters by 2(B).
Corollary 6.6. Let B be a p-block of G. Then

(13) k@) - t@) = I (b)
(x,b)

where the sum is over all proper subsections of B in G,
Proof: Elementary linear algebra.

Corollary 6.7. Let B be a p-block of G, and let

X, ¥y € G with non-conjugate p-parts. Then

(14) I Gox T = o.
Y€ B

Proof: By (8).

Corollary 6.8. (Brauer (1968)) Let X be a conjugacy class
of p-regular elements and e & R[G] a central idempotent. Then [X]e

is a linear combination of sums of conjugacy classes of p-regular elements.

Proof: Let J(l,... ,J(k denote the conjugacy classes in G

-1
d t . .. = (X, .
and le X, € J(L Set Ny ; XJ(xl )XJ and recall that

ni(xj) = Sij\CG(xi)
then

. Now, if [XKlJe = Zaj[J(j] and  x, is p-singular,
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(15) aiici ni([J(]e)

-1
? xj(xi )xi([}(])
Xj(e)#O

=0

by Corollary 6.7, as we sum over blocks of G

7. Subpairs.

The previous section raises a number of questions one of which
is: Given a block B of F[G] and x € D, where D 1is a defect group
of B, what can be said about the roots of B in CG(x) ?

It turns out that a particularly nice result holds for the
principal block, i.e., the block which contains the trivial l-dimensional

representation.

Notation: We recall that if B 1is a block of F[G], the

corresponding block idempotent is denoted by B.

Brauer's Third Main Theorem 7.1: Let BO = BO(G) denote the

principal p-block of F[G]. Then

i) The defect groups of BO are the Sylow p-subgroups of G&.

ii) The subpairs of BO are precisely the subpairs

(p, BO(CG(P))), where P 1s any p-subgroup of G.

Proof: (See also Alperin-Broué (1979).) Let o(G) = I g.

Then for an arbitrary p-subgroup P of G,

9] BrP(EO)O(CG(P)) BrP(EO)BrP(U(G))
= Brp(goc(c))
= BrP(U(G))

= 3(C(P))



as B is the unique block idempotent e for which eg{G) # 0. 1In
particular, BrQ(EO) #0 for Qe Sylp(G), and 1) follows from
Corollary 1.11. Moreover, (1) proves that (P, BO(CG(P))) is a subpair
of B for any p-subgroup P.

0
Next we prove ii) for P = Q. All subpairs (Q,b) of B

are conjugate by Brauer's First Main Theorem. But one of them is °
(Q,BO(CG(Q))), which obviously 1is NG(Q)—invariant.

Finally, let P < Q be arbitrary, and set R = NQ(P). We
may as well assume that R € Sylp(NG(P)). Let b be a root of B, in
CG(P) and let b' be a block of CG(P)R such that BrP(E')E = b, which
exists by Lemma 3.2 iii). This forces BrP(EO)E' =b' as well. We
claim that a defect group P' of b' contains P properly. Obviously,
P <P'. Nowif P = P', NG(P) and hence G would have a block B with
defect group P by Theorem 3.6 i) and Brauer's First Main Theorem such
that moreover BrP(g)E' =b', a contradiction as BrP(EO)E' =b'

as we have just seen above., Now, BrP,(E') # 0, and as

v 1 . . T
BrP(§O)b =b', this yields E;P.(EO)BrP(E ) # 0. However,
! = BrPl(

: B
B By)
'y ont v . . , . .
BrP,(E ) = B: , as B is primitive in Z(F[CG(P )1). Hence induction

B,(Co(P')) by induction as [Q : P| < fQ ¢ P'|. Thus

furthermore yields b' = BO(CG(P)R). But now, the fact that BO(CG(P)P)

is a root of B.(C.(P)R), as we saw above together with the fact that
c.pr 0 ©

' = Tryy)

(b) see Lemma 3.2) vyield that b = BO(CG( P)P) as claimed.
Remark. Before we continue, let us briefly recall some
standard notation and terminology from group theory. The maximal normal
p-subgroup of G 1is denoted by Op(G), and the maximal normal
p'-subgroup (i.e., of order prime to p) by 8P.(G). E?t G = G/Op.(G).
Then G 1s said to be p-constrained if CE(Op(G)) < Op(G).

Corollary 7.2. Let x € G be a p-element such that
Op,(CG(x)) =1 and CG(X) is p-constrained. Let B be a p-block of
F[G] with D as defect group. Then x 8 D if and only if B = BO(G).

Proof: One way is clear by Theorem 7.1 i). Conversely,

assume X % D. Then Br<x>(§) # 0 by Corollary 1.12., But then

Brp(g) # 0 as well, where P = Op(CG(x)) by Lemma 2.2. However,
CG(P) is a p-group by assumption and therefore F[CG(P)] has only one
p-block, the principal. Hence B = BO(G) by Theorem 7.1 ii).
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We now introduce

Definition 7.3. A group G 1is said to be of deficiency class

d, if

d.
o i
(2) d = max{di ‘iDi] =p "}

where Di runs through all defect groups of the non-principal blocks of
G. 1If this set is empty, G is said to be deficiency free.
(Notice, that here we divert from Brauer's terminology
(which is d+1 rather in all cases), in the hope that it is still possible
to change this.)
Corollary 7.2 is very useful when it is combined with the

following.

Corollary 7.4. Let G be an arbitrary finite group. Then

the following are equivalent:
i) G 1is deficiency free or of deficiency class O.
ii) CG(x) is deficiency free for any element x of order p.

iii) CG(x)/<x> is deficiency free for any element x of

order p.

Proof: The equivalence of ii) and i1ii) are by Lemma 3.10

and 3.11, while the equivalence of i) and ii) follows from Theorem 7.1 ii)

For other results in this direction, see Wales (1970) and

Solomon (1974).

Our next goal is to obtain a complete description of the

socalled major subsections. For more general results, see Olsson (1982).

Definition 7.5. Let B be a block of F[G] with D as a

defect group. Let (u,b,) be a subsection of B with u D. Then

(u,bu) is called major if u € Z(D).

Lemma 7.6. Let B be a block of F[G] with D as a defect

group. Let P, Q < D such that
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(3 PCD(P) =D = QCD(Q)
and choose subpairs (D,bD), (P,bP) and (Q,bQ) such that
(4) bDBrD(EP) = bD = bDBrD(EQ).
Assume X € G with P* = Q and b; = bQ' Then there exists

vy € N(bD) and z € CG(P) such that x = zy.

Proof: We first observe that (3) and Theorem 3.6 ii) ¢)

assert that D 1is a defect group of bP in PCG(P) and b in

Q
QCG(Q), independent of the choices of bP and bQ. Hence, as
bDBrD(E) = b, , it is possible to choose bP and bQ to s§ilsfy (4).
Let x be given as above. Then PC _1(P) = p* and
pX
x—l
(5) b _1(Br —I(EP)) =b x_lBr x‘l(EQ ) =b R
p* p* D D p*
x—l
Thus (D b _1) and (D,bD) are both subpairs of bP’ so by Brauer's
x
D
First Main Theorem, they are conjugate in PCG(P), say by z'. Then

x_lz' € NG(D) n N(bD), and so does z'_lx. Finally, set 2z' = zu, where
z € CG(P) and u € P. Thus

(6) X = z'(z'_lx) = z(uz'-lx)

]

and y = uz _1x € N(bD).

Corollary 7.7. Same notation as above. Let (u,bu) and
(v,bv) be major subsections with u, v € Z(D) such that
(7) bDBrD(Eu) = bD = bDBrD(EV).
Then (u,bu) and (v, bv) are G-conjugate if and only if u and v are

N(bD)conjugate.

Proof: One way is trivial by Lemma 7.6, choosing P = <u>,

. X x
= <v>, = q =
qQ v Conversely, if u v where x g N(bD), then bDBrD(b ) bD.
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Thus bz and bv are both blocks of F[CG(V)] with the property that D
. X _ X [
is a defect group and BrD(Ev)BrD(Eu) # 0. Thus bv = bu by Brauer's
First Main Theorem.

In particular, we have proved the feollowing important result

on major subsections.

Theorem 7.8. (Brauer (1971) 6A) Let B be a block of F[G]
with D as a defect group. Let (D,bD) be a subpair of B and let 6
be a complete set of representatives of the N(bD)—conjugacy classes of
Z(D)., For each u € & let bu be the block of CG(u) such that
(D, bD) is a subpair of bu. Then {(u, bu)} forms a complete set of

representatives of the major subsections of b in G.

Corollary 7.9 . Same notation as above. The number of major

subsections of B is at most Z(D)|.

Proof: C(lear.

8. Characters in blocks.

We now focus our attention on the characters of an arbitrary
block rather than the modules. An important tool is the Cartan matrix.

In the following, we let (F,R,S) be a p-modular system and
G an arbitrary finite group. As we intend to examine irreducible
characters, we will assume that S 1is a splitting field of S[H] for
all H <G.

Let B be an arbitrary p-block of G and B the
corresponding block of F[G]. Denote the Cartan matrix of B resp.

F(G] by Cp resp. ¢ and the decomposition matrix by D, resp. D.

Let LOREEEEY be the irreducible characters gf G and
¢1""’$Q the irreducible Brauer characters, and choose notation so that
the first kB resp. ZB of them are those of B. Finally, let
100Xy be representatives of the p-regular conjugacy classes in G,

& = =
and set ¢ {@i(xj)}, : {@i(xj)}.

X

Theorem 8.1. (Brauer (1941)) The determinant of “ is a

power of p.
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Proof: (Alperin, Collins and Sibley (1983)) We have already
seen in Theorem I.15.9 that det(C) # 0. Moreover, det(C) €Z by

definition and is positive by Theorem I.15.5. If [G! 1is prime to p,

then C 1is the identity matrix. Assume therefore that p divides |G

The proof is divided into two separate cases:

a) op(c) #£1. Set H= op(c). Let {¢.} resp. {Ei}
denote the characters of the p.i.m. 's of F[G] resp. F[GJ], where
G = G/H. (Observe that F[G] and F[G] have the same number of

isomorphism classes of simple modules. Now if denotes the Brauer

¢
H
character of the F[G]-module F[H], then ¢ = Ei¢H by Theorem II.11.14.

Moreover, ¢H(x) = 'CH(X)‘ for all p-regular elements x € G. Let §

denote the Cartan matrix of F[GJ and set ;i = xiH with the notation

-
classes in G. Finally, set § = {E;(;&)}. Then

above. Then x. are representatives of the p-regular conjugacy

lCH(XlX
[C(xy) |
¢ = )
lCH(xz)\
and as ¢ = Cc while ¢ = C¢ , the fact that det(g) # O implies that
Q‘ . —
(2) det(c) = T 'C (x,)] det(C)
= g B1 -

and thus we are done by induction.

b) Op(G) = 1. The fact we want to prove is equivalent to
the following: Let M be any F[G]-module and let  be the Brauer
character of M. Then pnp [ SpanZ{Qi} for some n € N as a class
function on the p-regular elements of G. By Lemma II.4.3, it suffices
to prove this for a module of the form ng where N < G and K 1is an
F[N]-module. Let U be the Brauer character of K. By induction, there
exists an m such that pmyK € SpanZ{Wj}, where {?j} are the characters
of the p.i.m. 's of F[N]. Thus pm¢K$S € Spanz{éi} and we are done.
Remark. The proof does not give any information about the
magnitude of det(C). However, this can be obtained by elementary methods.

First we observe
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Lemma 8.2. The determinant of b is a unit in R.

Proof: This is just a variation of the proof of Theorem I.15.9.
Let Q. € Sylp(CG(xi)) and let i be arbitrary but fixed. Let
Cl,...,gr denote the irreducible characters of <xi> inflated to

-1 . .
x> X Qi and set Ei = E ;t(xi )Cc' It is easily checked that

\CG(xi)l

(3) My -6
AR S

This implies that {Xi} considered as class functions on the p-regular
elements span a free module over R of rank 2, which reduced modulo (m)
has dimension {&. Thus the same holds for the irreducible Brauer

characters, and the lemma follows, as does

Corollary 8.3. Let Si(xj) = ¢i(x) + (=). Thus {Ei} are

the traces of the irreducible representations of G over F. Then

1) The Ei 's are linearly independent over F.

ii) The elementary divisors of the decomposition matrix of

G are prime to p.

By means of Theorem 8.1, we may now improve Corollary 8.3 1ii)

to

Corollary 8.4. The elementary divisors of the decomposition

matrix of G are all 1.

Proof: We have seen that the rank of the decomposition matrix
D is . Let q be a prime different from p. Then the g-rank of D
is % as well by Theorem 8.1, as th = C. Corollary 8.4 now follows from
Corollary 8.3.

Corollary 8.6. As class functions on the set of p-regular

elements of G,

(4) Spanz({xi}B) = Spanz({¢j%ﬂ).

Proof: C(Clear.
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We may now prove

Corollary 8.7. The elementary divisors of C' are the numbers
-1 -
' i .
|CG(X1)‘p""’iCG(X2)‘p' In particular, ‘G‘pg € Matl(Z).

Proof: Recall from Theorem 1.15.9 that

\CG(xl)\
[Cq(x,) |

(5) 3§

no
1K
[}

‘CG(XQ)‘

However, as ¢ 1is invertible in Matl(R) by Lemma 8.2, the elementary

divisors of over R are the claimed numbers. Hence the same is true

1)

over Z by Theorem 8.1.

We are now ready to concentrate on the characters., Let B

be of defect d. Set \G\ = pan, where (p,n) = 1 and recall that as B

. ~-d . .

is of defect d, pa divides Xi(l) for all 1=1,...,kB. We recall
a—d+hi

that the height hi of X5 is defined by xi(l) =p ng where

(p,ni) = 1.

Let x be an arbitrary irreducible character of B and assume
*
B 1is of defect d. Define the class function Yy by

pdx(x) for x p-regular
*
(6) ¥ (x) =

0 otherwise

The following is well-known.

*
Theorem 8.8. Let h denote the height of ¥. Then —%—X is

P

a generalized character, while is not.

1 *
hel A
P
Notation. Recall from Chapter I, Section 15, that the set of

p-regular elements in G 1is denoted by G and that if n, ¢ are class

O’
functions of G into S, we set
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1 -1
(7 M) =157 ¢ ~(x)g(x 7).
0 ''xeG
0
. . a-d * .
Proof of Theorem 8.8: We first prove that p X 1s a
*
generalized character. Let ¥ = Zaixi where a; € S. Then
a~-d * a
(8) (" "X axj)g = P <x,xi>GO

for all 1., Thus it suffices to prove that fer all irreducible Brauer

characters ¢, v of G, pa(C,w)G € Z. But this follows from
0
Corollary 8.7.

To improve this, we just compute
d-
(9) + x* X ) = i Lo]C(x.) x(x.)y )
h ~*A%6 7 TG 0 TG T AT IALY Y
% X,
J
d-h

-1
bt ; (D (LH Dy 50

where  1is the central character corresponding to Y, ](j is the

conjugacy class containing x. and [ K.1 = I  x . Let
] ] x € K.
a-d+h J
¥(1) = p m, where (p,m) = 1. Then
1 * m . -1
(10) (;E X 'Ki)G =5 3 (L }%])Xi(xj )

* 3, *
Thus n(JF X ’Xi) is an algebraic integer. As pa d(y ,Xi) € Z as well,
P
*
it follows in fact that (Ji X ,Xi) € Z. Finally, that
P P

generalized character follows from the fact that the degree of a generalized

* .
¥ 1s not a

1
h+l

character which vanishes on p-singular elements must be divisible by the

order of a Sylow p-subgroup.

Remark. Observe Theorem 8.8 was obtained without appealing
to Brauer's characterization of characters, thanks to the proof of

Theorem 8.1.

Corollary 8.9. Let G be a finite group and - an
irreducible character of G. Let the p-part of :G[ be pa, that of ¥ pb

Define the class function ¥ by
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pa—bx(x) for x p-regular

(11) (x) =

0 otherwise
Then ; is a generalized character.
Proof: Clear.

Remark: Notice that the statement does not require any concepts
from modular representation theory. Notice also that this is a
generalization of Corollary I1.16.2 and that no proof based on ordinary

character theory is known.

*
The construction of ¥ from vy in (6), which is due to
Rrauer (1953) is very important and will lead to a number of interesting

observations.
Notation. Set
) . 4
(12) aso= Ggad, = (‘i'xj)c =p Xi"j)G
for i, j <k

Lemma 8.10. The matrix A has the following properties

i) A 1is integral and symmetric

d -1t
s 2

i) a=vp B =B

[a" e

iii) A% = pa

iv) Tr(a) = pdu

Proof: 1) and ii) are by definition,
iii) follows from ii),
iv) follows from ii), as

(13) Tr(a) = p Tr(D

Another way of stating iii) is
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Lemma 8.11. Let Yx', x" be irreducible characters in different

blocks. Then (X',X”)G = 0. In particular,
0

% B
(14) . = L a,.x.
Lo 14
and
(15) pda.. =

L a. a_.
ij s 1ssj

Proof: The first observation follows from the fact that if
', ¢" are irreducible Brauer characters in different blocks, then

(o', ¢”)G = 0 as we saw in Theorem I.15.9, while (15) is just iii) above.

Notation. Denote the number of irreducible characters in B
of height 1 by ki . Recall that ko # 0 and let X be one of height
0
0. The central character associated with X5 is denoted by by .
The feollowing goes back to Brauer (1953) and Brauer and Feit

(1959) and is partly inspired by Hansen (1983).

Theorem 8.12. With the notation above,
hi+1
i) ass #0 h§nd a; £ 0 mod p if and only if X; 1is

of height 0. Moreover p divides a,. for all j. In particular,
I ]
a.. cZ.
H pdxi(l)

ii) For all 1, j, s, we have

(16) a.. _lel T a, _lel mod p.

d d
D) S p xs(l)

X5
iii) For all j we have

a-d+h ., +1
(17) a; x4 (1) = a; Xj(l) mod p

1
0’.l [¢] o 0

In particular, a. ., # 0 for all j, and the p-part of a, . is
1] 1,
h. 0 o

precisely p J,

iv) The rank of A reduced modulo p is 1.



Proof: That asy # 0 follows from the fact that

*
(Xi'Xi)G =pa... Moreover,

11
d -1
S Lo, (
(18) a4 7%;r xejG )(l(x)xJ x )

d 0

= 7%?7 ) |C (x ) X (x )X (x )
ft
d -1

- For D e (LR D)

which shows that p Y divides a.. , as w.([K. 1) is an algebraic
1] 1 t
integer. Thus a . -——L—L—— € Z, and

x (1)

(19) a, ——J—J—-— ——l——L—— mod p

i ¥ (1) RE px (1)

fer all i, j, s by (18), as ‘“Ji([xt]) E ws([]'(.t]) mod p by
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Theorem 1.13.6, which proves ii). Choosing 1 = j = io we moreover see
that if a; 4 = 0 mod p, then ag; Z 0 mod p for all s and then
oo o
l X would be a generalized character, a contradiction by Theorem 8.8.
Flnafly, if we choose j =1 and s = io in (19), we see that if
T
hi # 0, then a;. —ngl~— = 0 mod p, and all of i) is proved.
P (D)

iii) is an immediate consequence of ii).

iv) Again ii) implies that

X (1) hs+l
.= R
(20) 4 2 J % Ty mod P
Yo
Xg (1
as R . Thus the s'th row of A 1s a multiple of the i 'th
X; P I = o
0

mod pR, and iv) follows.
We may now determine the elementary divisors of QB

Corollary 8.13. Exactly one of the elementary divisors of

@]

is p, while the others are strictly smaller.
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* d .
Proof: We have seen that (Xi,xj)G = p (Xi'Xj)GO is an

integer for all i, j < kB . Hence pd(mi,¢j) is an integer for all

2 (Z), which
B

. . cos .. d
is equivalent to the fact that all elementary divisors of QB divides p

However, as the rank of A reduced modulo p 1is 1, the same obviously

i, j < QB by Corollary 8.6 and consequently pdgé_l € Mat

holds for pdggl and thus only one elementary divisor is actually 1.
Theorem 8.12 has a number of other applications, such as

Corollary 8.14. (Brauer and Feit (1959))

1 2d
B 27 (p""-1) + 1 for p odd.
i) K, <224V

i) k

~

for p=2 and d > 1.

Proof: By definition,

* % d 2 - 2
(21) (xi,xi) =pa;; =a;, v I al..
i#l

Moreover, if we choose 1 = io’ we know that ai . # 0 for all j and

03
thus
d
(22) k < Z a., .+1l=pa. . =-a,. +1,.
B - .. 1] 11 11
J#lo o oo oo
d
The right hand side assumes its maximal value for a, ; = E. . as
oo
ai : € N and p does not divide ar r the statement follows.
oo 00

Corollary 8.15. (Brauer (1941), Brauer and Feit (1959))

If the height of X5 is h, and B is of defect 4, then
i) h.
1

ii) h, =0 if d<2.

d -2 1if d> 2

A

Proof: By Theorem 8.12 1) and Proposition 1.16.1, hi+1 < d
if ho #0.

Corollary 8.16. (Landrock (198la) Assume p = 2. Then
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i) Assume d > 1. Then kO = 0 mod 4.
ii) Assume d > 2. Suppose furthermore kd—Z # 0. Then
a) kO =4
b) kKyp <3
Proof: 1) follows from (21), as aij =0 or 1 mod 4,

always

ii) Let Xy be of height d-2. By 1) there exists at
least four irreducible characters XpreeeaXy, in B of height 0. By
Proposition 8.12 1) and iii), 297 divides a_ , i =1,...,4, while
Zd—l divides a__. Thus

rr

2(d-1) &2 2 d 2 2(d-1)

(23) 2 < ¥ al.+ L a.=2a_-a 2
- . ri . ri T rr —
i=1 i>4
i#r
. - 2 .
Hence equality holds and Loa = 0. 1In particular, kO =4 by
i>4
i#r

Theorem 8.12 iii). Finally, if we set 1 =1, say, in (21), we see that
kd—Z < 3.

Remark: For other applications of Lemma 8.10, 11 and

Proposition 8.12, see Olsson (1981). See Broué€ (1980) for other results.
Corollary 8.14 through 16 are all based on properties of
characters on p-regular elements. It seems reasonable also to try to use
their values on p-singular elements, in particular since we have Brauer's
Second Main Theorem at our disposition.
Following Brauer (1968), we therefore gencralize the idea
behind the matrix A.

We continue with the previous notation. Moreover, we let

w €& D (including 1 as a possibility) be fixed and set C = CG(w). Let
{br} be ihe roots of B in F[C% and denote the component of rvc in
br by Xir . In other words, Xir(X) = ii(hr x) for all x € C, where
as earlier the block idempotent of a block B 1is denoted by B. Recall

that if g belongs to the p-section G(w) then g ~ wx for some

G
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p-regular element x € C. Moreover, by Lemma 6.2,

b
r
(24) Xi(g) = I Xi(P_r wx) = L X5 (wx).
ba ba
We now set
b b b b
T T 1 T r, -1 -1
(25) mij(w) = mij = W xzec Xi (WX)XJ (w "x 7)
0
b b b
and M(w) T =M T = o “}. It follows that if Lewp oo, are
representatives of the G-conjugacy classes in D, then
b
Ts
= = &
(26) L mij(w) (Xi’Xj)G i3
w_ T
s s
b

ba . .
The numbers mii(w) are called the contributions of Xy o We now have,

just as in Lemma 8.10,

b
Lemma 8.17. (Brauer (1968), (5C)) The matrices M(w) r
satisfies
b t
DENCORLIE W )

=b —b -b

br 2 b
i) ) HT = T

b
iii) Tr(MGw) 7Y = 2(b )
br d(b_) b
iv) M(w) is symmetric and the entries of p r M(w)
are algebraic integers -

v) p M(l) A
Proof: By Brauer's Second Main Theorem.
We proceed to investigate these contributions.

Notation. Following Brauer (1968) (p.903), we set

¥ (wx)

i +_i___._717. if g 6 wX, X € CO

r
(27) wy (f J(g]) =

0 otherwise
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Denote the irreducible characters in the roots of B in C

by (;j}. Thus

(28) Xi(WX) = Zcijej;j(x)

for x € Cgy, Ej an ord(w)'th root of unity and i " (Xi’;j)c by (24).
Hence,

o XD o
(29) L (LKD) = 1t Ty C1555 TRD

where J(g resp. }(g is the G- resp. C-conjugacy conjugacy class

[

containing g € C. Let uij denote the coefficient to &j in (29).

Remark: Note that u..€R 1if ¥, 1is of height O and that
1] L d-d(b

T

if this is the case then furthermore uijz 0 mod p if d(br) < d,

for ij in the block determined by br'

Lemma 8.18. (Brauer (1968), (3D)). With the notation above,

we have

b
i) .. 7(UX 1her forall xecC
1 WX 0

b
i) WX D 2w, (LXK 1) mod (7)  for all x €C
i wX ] wX 0

Proof: TFor x & CO, let J{x denote the Co—conjugacy class

containing x. Set fi([J(x]) = ui([](wx]) for all x € Cor Then

b .
T
(30) LK D =T . ([J(wx])

1 X 1
= I uij:j([}(x])

where uij is as above (see (29)). Thus fi is S-linear, and it follows

that

b
7 T
(31) £LLK b =W K, D

But [J(XJET is an R-linear combination of class sums of p-regular

elements in C by Corollary 6.8, and as fi<[j2x]) € R for all x € CO

by definition, it follows that i) holds.
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To see 11), recall that

-1

(32) M C AR SR (kK Der
1 2
for all il' i2 < kB. But then the argument above yields that
-1 br br
(33) 1 (. (wx) - . (wx)) € R
! 2

which 1s equivalent to ii).

Remark: It follows from our remark just prior to Lemma 8.18

that if X5 is of height 0, then actually
br d-d(b )
W ([}(wx]) = 0 mod (p r ), so this lemma is only useful when applied

to major subsections, which is exactly what we proceed to do.

Theorem 8.19. (Brauer (1968), 4B) Let (w,br) be a major
subsection, and let b be a block of F[CG(D)] such that BrD(Rr)b = b.

Then
b
(34) ap (w) = IN(b) : N(b) N C. mod p
b br
for all i. 1In particular, (ir(w) # 0 and consequently mii(w) # 0,

for all 1.

\

Proof: By Lemma 8.18, we may as well assume that X4 is of
height 0. Let the order of a Sylow p-subgroup of C be pc. Let B
be the block of F[N], where N = NG(D), corresponding to B. As an

R-form of 18 has D as vertex, Corollary 5.2 and Green Correspondence

yield
) _ ¢ z a-d+1
(35) xi(l) = Tﬁ% 14 (B) mod p
G N a-d+1
= Tx yi(TrN(b)(b)) mod p

by Lemma 3.2

G, a-d+1

. .G . (
= TﬁTtTT Ki\h) mod P
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Likewise
) IC| CNN c-d+1
- . b
(36) i(P__r) - TElF#ﬁT ‘i(TrC A N (b)) mod p
ic! c-d+1

= Tena T R med e

Now (35) and (36) yield (34)

We may now prove Brauer's Theorem on blocks with abelian defect

groups and inertial index 1. This 1is based on the following observation.

Lemma 8.20. Suppose QB = 1. Then kB i.pd and the Cartan

c . . d-
matrix 1s ‘p .

. d
Proof: First of all € = ip } by Corollary 8.13. Let {di},

B
oo . d .
be the decomposition matrix. As Zd? =p it follows that

Theorem 8.21. (Brauer (1971), Prop. (6G)) Assygme the defect
group D of B 1s abelian and that the inertial index of B is 1. Then
kB = pd, QB =1, CB = {pd} and the decomposition numbers are all 1.

Moreover the number of major subsections 1S p

Proof: (See Hansen (1983)) By Corollary 7.10 and Theorem 7.9,

d . .
B has exactly p major subsections. Hence

n
b b d
(37) pd > N pdm.‘ T (w) > pd( I ipdm.. Ty [P > Pd
(w,b_ ) tr (w,b ) .
r T
and thus
b
(38) %, T =1
(w,b_) tt
r
d B . . . d B .
As p Lo (1) 1is an integer, this forces p m . (1) = 1. As this holds
for all 1i's, Lemma 8.10 iv) yields that
d d
(39) LBp =k =P
where the last equality follows from (22) since a,, = 1 for all 1i.

11
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Corollary 8.22. (Landrock (198la), Lemma 1.7) Assume the
defect group D of B 1is abelian and let b be a rootof B in DCG(D).
Assume furthermore that CG(w)(\ N(b) = CG(D) for some w € D.

Let b1 be a root of B 1in CG(w). Then Q(bl) = 1. Denote
the corresponding generalized decomposition numbers by {d?}. Then dz #0
for all i, and zja?iz = ||,

i
In particular, kp < ID|.
Proof: Our assumption conveniently implies that the inertial
. 2
index of b, is 1. Thus (b)) =1 by Theorem 8.22, and I \dzl =D
i
by Brauer's Second Main Theorem. Moreover, d? # 0 by Theorem 8.19. Set

a = :{d?!z and let {a l}, i=l,...,v Dbe the algebraic conjugate of a
i
over Z. Then

0.
(40) v|D]| Z'ka1§a Y > vk

c.
as Ta € z\{0}, and the last statement follows.

Remark: The assumption above on CG(w)Iﬁ N(b) of course may
be replaced by L(bl) =1, 1in which case we do not even need D to be
abelian provided (w,bl) is a major subsection. But if D 1is
non-abelian, the assumption that CG(w) N N(b) = DCG(D) will not necessarily
imply that L(bl) =1,

Example 1. Let G = GL(2,3), 1let F be of characteristic 2
and let w denote the central involution of G, D a Sylow 2-subgroup.
Then the principal 2-block BO of G has inertial index 1 and

N(BO(CG(D)) = DCG(D) = D. However, QBO = 2.

Remark. We have just seen that if a block B has inertial
index 1, then we cannot always deduce RB = 1. The converse conclusion
cannot be drawn either, in general, not even for p-solvable groups.

Our remarks above indicate that to generalize Brauer's
Theorem 8.22 to the non-abelian case might be complicated. However, one
step towards this has been taken in Brou€ and Puig (1980). The class of
blocks they describe are what they call nilpotent blocks. Here the p-block

B with defect group D 1is called nilpotent if for all P < D and all
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roots b of B in CG(P) we have that N(b)/CG(P) is a p-group. An
important step towards this description is the following interesting result

(compare Theorem 8.19).

Theorem 8.23. (Broué and Piug (1980), Theorem 1.5) Let B
be an arbitrary p-block of G with B the corrgfgogding b%ock of F[G],
and let (w,br) be a major subsection. Then p r mii(w) is a unit
in R, with the previous notation, for all 1i. 1In particular, all

contributions from major subsections are non-vanishing.

It does not seem to be possible to prove this directly from the
methods which yielded Theorem 8.19. The result is based on some relatively
deep results of Broué (1978) and we refer the reader to the original sources

for a proof.

We end this section with a description of the algebra structure
of the block considered in Theorem 8.22, which explains the somewhat
surprising (at that stage) result in Corollary II.16.1, hopefully to our
complete satisfaction.

The results below have been proved in general for nilpotent
blocks in Broué and Puig (1980), while the specific results as we state
them have been obtained independently by KlUlshammer (1980). We shall

follow his work quite closely and start with

Lemma 8.24. Let B be a block of F[G] with D as defect
group and assume B has exactly one simple module. Denote its dimension
by m. Let B0 be the basic algebra of B. Then dimFBO = |D,, and
B = Matm(BO).

Proof: Let P(B) denote the p.i.m. of B. Then

B PR
BO = (P(B),P(B)) by definition, and as BB B P(B)(m), we see that
B = Matm(BO). Moreover, dim, B is the Cartan invariant of B, which

F 70
is [D{ by Corollary 8.13.

Lemma 8.25. Let B be a block of F[G] with defect group D,
and assume G = DCG(D). Then %(B) = 1. MWoreover, with the notation of

Lemma 8.24, By = F[D]. 1In particular, B =~ Matm(F[D]).
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Proof: As any simple B-module has D in the kernel and is a
projective F[G/D]-todule, £{(B) =1 by Lemma 3.9. The corresponding

block b = EF[CG(D)] is simple and isomorphic to Matm(F). Let B = Zei

be a primitive idempotent decomposition of B in F[CG(D)]. As
B/J(B) = b, this is also a primitive idempotent decomposition in

F[DCG\D)]. Thus By = elF[G]el. Hence I : F[D] ~» B, defined by

[(a) = e ae; = aey is an algebra homomorphism, and injective as elB¢D
is free. As F[D] and BO have the same dimension, it is an isomorphism.

is

Theorem 8.2¢. Same assumption as in Theorem 8.21, and notation

as in Lemma 8.24. Then 3 =~ Matm(F[D]).

Proof: As we saw in Lemma 8.24, this is equivalent to proving

that BO ~ F[D]. Now, to see this, we first observe that Z(BO) = 72(B)

which by Theorem 8.21 is of dim D’ . Thus BO is abelian and naturally

igomorphic to Z(B) by Lemma 8.24.

Cet C = CG(D) and N = NG(D), and let b be a root of B
in F{C]. Then b = Matm(b)(F[D]), where m(b) is the dimension of the
simple b-module E, by Lerma 8.25.

Let B denote the corresponding block of F[N]. Then EﬁN is

the simple ﬁ—module, as C 1is the inertial group of M by assumption.
Lence B = Mat&(F[D]) by Theorem 3.4 where @ = |N : Clm{b), and
Z(B) = F[(DJ.

Finally, we recall from Lerma 2.6 that BrD induces a
homomorphism from Z(B) into Z(B). So we are done if we can prove that

this is an isomorphism. By Lemma 2.6,
(41) Br (z(8)) = B(F[cDY .
D - D
On the other hand, Z(B) = 2(b) = E(F[C])g by Corollary 1.6 and thus
(42) z(B) = Tri(2(b)) = Tra(bFLCD)T @ BFlCI)
and we are done.

kemark. Similarly, we get that the corresponding block B in

R[G] is isomorphic to Matm(R[D]) in Lemma 8,25 and Theorem 8.26.
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Remark. We point out that if B 1is a block of G = DCG(D)
with D as defect group, then B has exactly one irreducible character
with D in the lernel, namely the irreducible character in the corresponding
block of G/D of defect 0. This character is called the canonical

character of B.

9. Vertices of simple modules.

In this section we prove a deep result due to Kn8rr (1979)
on vertices of simple modules and R-forms of irreducible characters.
Combining his ideas with the idea behind our proof of the extended first
main theorem, we next derive a new result from which a result of

Frdmann (1977) on simple modules with cyclic vertices follows.

We are already well prepared for the proof of Kn8rr's Theorem
because of our discussion in Chapter I1, Section 1ll.

Let (F, R, S) be a p-modular system, and let § equal F
or R.

vet X & M,(G) be indecomposable, where G 1is arbitrary. The
name of the game is th; following: Rather than assuming that X (for
3 =F) or X 8p S {for % =R} 1is simple, we assume that if D 1is a
vertex of ¥ and Gl = NG(D), then (X,X X6 is a cyclic S-module,
i.e. a homomorphic image of §, where %X ={0nNn Dg}g ¢ Gl}. Then the
same holds if we replace X by its Green correspondent f(X) in G, and

1
G by G by Corollary 11.5.8. Next, Corollary II.5.4 will allow us to

l’
go down to the inertial group T of a source N of £(X), 1if we replace
X by )C: Xn G T. This is how far we will get with ideas already

1
developped.

We must consider the following situation: T 1is a finite

group, D & T 1is a p-group, and N & 4, (D) 1is indecomposable and

T-stable. Set CO = CG(D) and C = DCO. Next we set

D N
(1) L P R R M IR LR

48 we saw in Chapter IT, Section 11, we then have the embeddings
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(e @}

3
N
%)
Y
o
Y
t

Moreover, there is a natural embedding

~
w
~-

€t R[CO] > E.

namely the homomorphism

{4) e(c) ¢ In_ B x > n_ B cx
X X

Now, with the notation following Lemma II.11.4 we may choose

¢ as the identity for ce€ C It then follows that e(c) = o
c

0
Finally, we recall from our discussion following Proposition

II.11.8 that

F/J(EE = F [T/D]

5)
2./I(EDE, = FLC/D]
“le now have the following commutative diagrams
: Frg
G[Co] >E »E
(5) o Yo Y

e[c]—3>F[c/D1C—ﬁFA[T/D]

where vy, Yo and 3 are the canonical maps and o and ¢ the embeddings.
Indeed that the first diagram commutes follows from the fact

c,,c, € C. That the
1% ¢ e 1’72

second diagram commutes follows from the fact that

that €(¢) = ¢ » Notice that v - =, for
¢

(

~
~—

( =
J.El)E n ¢ J(El)EC

S . T .
and thus Yo 18 just the restriction of vy to Hence FrC induces a

L‘C.
map from F[C/D] into F [T/D] which is identical to the embedding, as we

may deduce from our discussion prier to Proposition II.11.5.
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Moreover, as the kernels of Yo and R are both contained in
the radical, there is a one-to-one correspondence between the idempotents
of O[CO] and those of F[C/D], since moreover B °a 1is surjective.
Thus the same holds in relation to ©6[C] and E_..

C
We now have

Proposition 9.1. (Kn8rr (1979)) Let eeE be an idempotent
such that Y(e)FA[T/D] is semisimple. Then all components of (e(Nﬂ‘))+C

lie in blocks in &[C] with defect group D in C.

Proof: Recall that E 1is a free Ec—module and let

eE = @ fiEC as an Ec—module for suitable primitive idempotents fi € EC.
Choose for all i e € vlC] a primitive idempotent with E(ei) = fi .
Then
(8) v(e)F [1/D] = 8 v (£ )FlC/D]
i
=8 °E(€i)F[C/D]
i
=@ & cale )F[C/D]
i

3y assumption, Y(e) J(FA[T/D]) =0. As C AT, this forces

Yo(fi) J(Flc/D1) = 0 for all i and thus 8 °q(ei) belongs to a block
of defect Q. Hence u(ei) belongs to a block with defect group D by
Lemma 3.8. Finally,

4T 4C
(9) (e¥ ")) . = ? £

-6 £e<ei>]<w*c>
i

4\
=@ ule,)N ¢
. 1
1

by (6).

Proposition 9.2. (Kn8rr (1979)) Let D 4 G be a p-group and
set C = DCG(D). Let B be a p-block of G and let X be an
indecomposable B-module which is D-projective.

Assume there exists a family L oof subgroups of G such that
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0 # (X,X)‘(’G is a cyclic O-module, and let b be a root of B 1in
CG(D). Then b has defect group D 1in C.

G . ce . .
Proof: Note that as (X,X)G/J((X,X) ) 1is a division ring,
and a cyclic 6-module by our assumption, the only possibility is F = R/(m)
In particular, X 1is absolutely indecomposable (see Appendix III).

Let NGHG(D) be a source of X and let T be the inertial
+G

group of N. Let M‘NﬁT be indecomposable with X|M ~. Then actually,
G ..
X = Md\ by Lemma II.ii.4. Set (MﬁGhT =M@ MO . Then
xn 1,7 ¥n.1,t
G G’ G’
(10) 0% = oL ® (1)

by Corollary II.5.4. Furthermore, M 1is }fﬂG T-projective if the first
term equals O, by Theorem II.2.3 and Lemma II.3.9. But then the second
term would be 0 too, a contradiction. Thus

e LSRR

(11) (X,X) = (M,M)

A A
where )rl = )fﬂG T. Now, let e € E = (N'T,M T)T be the idempotent

corresponding to the direct summand ™. Then eEe = (M,M)T and

(12) eEb e = e(E,) Ee
' 13, N.D

by Propositien II.11.8, where El = (N,N)D. So

X T
- o

(13) (M,M) = ehe/eEu.le > eEe/e(El)wlnTD DEe

is cyclic. As (E1>)I1(\TD SJ(E1>v this forces

(14) Y(e)F [T/Dly(e) = F

with the notation of (6). Thus +v(e)F [T/D] 1is simple, as FA[T/D] is a
symmetric algebra. Finally, as all direct summands of M¢C lie in roots
of B by Lemma 3.2, we are done by Proposition 9.1.

Using the same notation, this proof combined with the idea

behind the proof of Theorem 4.1 moreover yields
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Proposition 9.3. Same notation and assumptions as above.

Assume furthermore that § 1is a splitting field of S[C/D]. Let YlX#C

. G
be indecomposable with vertex D such that X\YT , and let T1 be
inertial group of Y in NG(D). Then \TI/C| is prime to p. In
particular, if Y lies in the block b of F[C], the defect group of b

in T is D.

1
AT My
Proof: We may as well assume that M|Y ~. Choose M1|Y
with M = M1¢T. Then by the same argument as above,
i,,T o, N.T,T
1 1''T°1
(15) (M,M) = (MM

and thus all statements above hold if we replace T by T
T T
if e e (v 1,Y ) is the idempotent corresponding to the direct summand
T

M of Y 1, the corresponding idempotent y(el) €F [TI/D] has the

1 In particular,

property that Y(el)FA[Tl/D] is simple. Now let b be the block of
F[C/D] corresponding to b. Obviously, T, < N(b). We now claim that the
corresponding idempotent b is a block idempotent in FA[TI/D]. Let

X € Tl. Then

(16) att,eH el p e
is a block idempotent of F[C/D]. However, as it contains the module
Yl g t = Yl’ it must be equal to E, or, in other words, t -E = E *t as
claimed. Moreover, Y(el) above lies in this block, which shows that
EFA[Tl/D] is a simple algebra. Now, let D < Q < T with IT : Q| prime
to p. Then bF [qQ/pD] 1is a simple algebra as well, as
b € Flc/p] c Flo/nl.

Finally, let A be the simple b-module. Then the p-part of
dimFA is the order of a Sylow p-subgroup of C/D. Moreover, A = AF [Q/D]

is semisimple and projective, and the p-part of its dimension is precisely

that of dim.A times |Q/C|. However, any direct summand of A has a
dimension divisible by this number as well, by Proposition II.11.8,

. 2 (le/p) . .
Finally, as A¢F[C/D] = A we deduce just as in the case of the

extended first main theorem that A 1is simple. But this is clearly a

contradiction, as C 1is normal in Q, unless C = Q.
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We may now prove our main results. First, we have Kndrr's

Theorem.

Theorem 9.4. Let X€ lde(G) be indecomposable in the block
B and let D be a vertex of X. Set X = {DN Dg\g 4 NG(D)}, and
x,G

assume (X,X) is a cyclic 6-module. Then there exists a B-subpair

(D,b).

Proof: Let f denote Green correspondence between G and
H = NG(D) w.r.t. D. Then (f(X),f(X)))E’H is cyclic by Corollary II.5.8.
Let Bl be the block containing f(X), set C = DCG(D) and let b be

any root of Bl in C. Then D 1is a defect group of b by Proposition
9.2. As BrD(E)Bl # 0 by Theorem 5.1 b 1is a root of B as well, and

we are done,

Corollary 9.5. Same notation as above. Assume 6 = R and
that M 1is an R-form of an irreducible character. Then there exists a

B-subpair (D,b).

Proof: If M 8y S 1is simple, then (M,M)G ~ R and thus the

assumption of Theorem 9.3 holds.

Corollary 9.6. Same notation as in Theorem 9.3. Assume
6 =F and that M 1is a simple F[G]-module. Then there exists a B-subpair
(b,D).

Proof: Same argument.

Corollary 9.7. Let B be a p-block of G. Let V be the
vertex of a simple F[G]-module in B or an R-form of an irreducible
character in B. Then there exists a defect group D of B in G such
that
(17) C,(V) <V < D.

Proof: By the corollaries above and Theorem 3.3 iii).

Another consequence of Theorem 9.4 is of course that OP(C) = D,

Eowever, Proposition 9.3 allows us to improve this considerably.
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Theorem 9.8. Same notation and assumption as in Theorem 9.4.

be indecomposable with X\Yﬁc, and let T, be the

Let Y|X Y

¢DCC(D)
inertial group of Y in NG(D). Assume furthermore that S 1is a splitting

field of Cg(D).. Then [TY : DcG(D)\ is prime to p.

Proof: Just as in Thecrem 9.4, Corollary II.5.8 reduces the

problem to the case where D 1is normal in G.

Corollary 9.9. (K. Zrdmann (1977b)) Let B be a block of
F[G] and let X be a simple B-module with cyclic vertex D. Then D 1is

a defect group of B.

Proof: We may assume that F is a splitting field of C,(D)
(see appendix III). Let b be the block of F[CG(D)] containing Y
with the notation of Theorem 9.8. By Theorem 8.26 and the example of
Chapter II, Section 8, the p.i.m. of b 1is uniserial and Y 1is a
submodule. Hence Y 8 g = Y whenever g_lbg = b and TY = N(b). By the

Extended First Main Theorem, B has D as defect group.

Remark. A similar result does not hold if we replace F by
6 and assume X 1s the R-form of an irreducible character. The point is
that we cannot necessarily deduce from g_lbg =b that Y& g=Y.

As an example, let <x> be a cyclic subgroup of order 4 in a
dihedral group P of order 8. Let 7 be a faithful irreducible character

P, . . . . .
of <x>. Then Qﬁ is irreducible, simply because the inertial group of

¢z is <x>, which is also the vertex of an R-form of .

As the point of the proof above is to deduce that Y & g =~ Y
whenever g—lbg = b, it is natural to ask when this happens. Thus we

introduce

Definition 9.10. Let P be a p.i.m. of F[G] and let M be a
submodule of P. Then M 1is called characteristic in P (see Brandt
(1981)) if M) = M for all ¢ € (M,M)G.

It follows that whenever Y 1s characteristic in the p.i.m.
of b, then D 1is a defect group of B.

For a number of results on characteristic submodules, see

Brandt (1981) and (1983).
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It is quite feasable that the results above may be considerably

improved or supplemented. For a discussion of this, see Willems (1981).

10. Defect groups.

In this final section, we shall make use of the theory of

permutation modules we developed in Chapter II, Section 12.
We start with a new proof of a result of Green, which states
that a defect group of a block is always the intersection of two Sylow

p-subgroups.

Proposition 10.1. Let Q€ Sylp(G) and let IQ denote the

trivial F[QJ-module. Let B be an arbitrary block of G, and let D be
A
a defect group of B. Then IéG has a direct indecomposable summand in

B with D as a vertex.

Proof: (Sibley) By Theorem I1.3.10 and Theorem 5.1, it

A ~
suffices to prove that (I'G) has a direct summand in the block B
Q %NG(D)

of F[NG(D)] corresponding to B with D as a vertex. By Mackey
decomposition, it therefore suffices to prove that for some Yy € G,
A
'NG(D)

(1) (I, 8 7Y)
Q QNN (D)

has a direct summand in B with that property. Choosing v =1 we
conclude that it suffices to prove the statement when D 1is normal in G.

As D 1is in the kernel of I it therefore suffices to consider the case

Q

where D =1, or in other words B 1is of defect 0. But this case

follows immediately from the Nakayama relations. Indeed, let M be the
simple B-module. Then (IgG,M)G = (IQ,M)Q # 0 as 1Q is the only simple
1+G

F[Q]-module. As M 1is projective, it follows that M%IQ

Corollary 10.2. (Green (1968)) Same notation as above. Then
D=QnN QY for some Yy & G.

Proof: By Lemma II.12.5.
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lndependently of this, let us make another connection to

trivial source modules.

Lemma 10.3. Let B be a block of F[G] with D as defect
group, and let B be the corresponding block of F[NG(D)]. Then all
simple modules in B are trivial source modules with the trivial
F[D]-module I, as source.

In particular, their Green correspondents in B are liftable,

as the F[G]-homomorphisms between them.

Proof: Any simple B-module has D in its kernel and is
projective as an F[N(D)/D]-module, hence is a trivial source module. Also,
the Green correspondent lies in B by Theorem 5.1. The second part now

follows from Theorem II.12.4.

We proceed to briefly discuss the idea of lower defect groups,
inspired by Burry (1982), and refer to the very recent Green (1983) for
further developments. For different approaches, see Iizuka (1972), Brou€

(1979) and Olsson (1980). The original idea goes back to Brauer (1969).

Let J(l,...,3g< denote the conjugacy classes in G and
choose x. € J(i for all 1i. Set C; = CG(Xi) and for any H < G, the

trivial l1-dimensional 6[H]-module is denoted by I where 8 1is F or

’
R for (F,R,S) a p-modular system. !

The whole point is now to let A = 8[G] act on itself by
conjugation, which gives A a different structure as an A-module than the
usual.

We observe that the blocks {Bi} of A are invariant under

this action and
k
(2) A= @ I, .

Thus each block is isomorphic to a direct sum of certain trivial source

modules.

,ﬁ
In Lemma II.12.7, we saw that ICG has exactly one
i
indecomposable direct summand P(Ci)’ which contains IG as a sub- or

factor-module, and if Q. € Syl (C,), then Q. 1is a vertex of P(C.).
i v p 1 i i
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Moreover, P(Ci) is entirely determined by Qi as we saw in Lemma 12.7

(these modules are called Scott-modules in Burry (1982)).

Notation. Following Burry (1982), we let P (G) denote a
complete set of representatives of the conjugacy classes of p-subgroups
of G and let B be a block of FIG]. For Q & P(G), the multiplicity
of P(Q), 1in the notation of Lemma II.12.7) as a direct summand of B

under conjugate action is denoted by mB(Q).
We now have the following beautiful result.

Theorem 10.4. (Burry (1982)) The multiplicity of Q as a
lower defect group of B (see Definition 2.7) is equal to the multiplicity

above.,

Proof: We shall give a very short proof which is partly
inspired by Green (1983), although more direct.

Let K. = SpanF{g|ge,J(i}. Then K, is a right F[G]-module
. . . . 4
under conjugate action, and as such isomorphic to ICG . As we have
i

discussed above, P(Ci) is a direct summand of this module, and its
trivial submodule is obviously spanned by v, = [J(i]. Now for Q& GD(G)

it follows that

G _ |
A = span {v. | Q, % Q}
3) AG = Span_{v, | Q. < Q}
<Q PARpIV; 1y G
A=Q = SpanF{vi \Qi = Q}

We now take advantage of the facts that the two former are ideals in 2(G)

and that (see Section 2, (7))
. G . G . G
4) dlmFA=Q = dlmF(AQ) - dlmF(A<Q)

is the multiplicity of P(Q) as a direct summand of A = F[G] under

. . G
conjugate action. Indeed the fact that A and AS

Q

are ideals imply

Q
that
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G G G G
( =9 AB, A =@ A B,
{5) AQ ? Bl, <Q ? R

where B, runs through the blocks of F[G]. Hence

G
dim_(A'B) = I m(R)
Mg 82 R<Q B
(6) G
dim. (A% B) = I m (R
Free= T plq B
G
and as Q) = ¢ (R) - £ m{(R), we are done by (4) and
g R_<_QmB Req B
e G

Definition 2.7.

We may now use Burry's characterization of the multiplicity of
lower defect groups to derive a number of the fundamental properties in a

very easy and straightforward manner.

Lemma 10.5. (Brauer (1969)) Let D be a defect group of B
and Q a p-subgroup of G. Then

i) mB(Q) =0 if Q¢£0D
G
ii) mB(D) # 0.

Proof: The vertex of P(Q) is Q. As P(Q) is D-projective
by Lemma 1.15 if P(Q) 1is a B-module, i) follows

ii) 1is by definition and Lemma 1.7.

Theorem 10.6. (Brauer (1969)) Let {Bi} denote the blocks of

F[G]. Then
(7) z (Q) = dim_, Z(B)
Qe P E °F
and
(8) Lomy (@ = [{}.] D) =ai].
B. i J ]

i
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. . G . .
Proof: Under conjugate action, Z{(B) = B while K? is

l-dimensional, where K, = SpanF{g ‘g c }(i}, from which (7) follows.
Moreover, as F[G] = @ Ki under conjugate action and D(J(i) is a vertex

of the direct summand containing the trivial submodule, (8) follows.

The next result shows that the lower defect groups, just as the

defect groups, can be determined locally.

Theorem 10.7. (Brauer (1969)) Let {bi} be the blocks of
F[NG(Q)] such that BrQ(E)Ei # 0. Then

(9 mB(Q) = ; mb.(Q>'
i i
NG(Q)
Proof: By Lemma 2.6 and Definition 2.7, as F[CG(Q)]Q =
N _(Q)
F[NG(Q)]=8 with the notation we used there.

Remark., Theorem 8.26 demonstrates the importance of lower
defect groups. Indeed, Lemma 2.6 iii) which was the key to Theorem 8.26,

can be restated:

Lemma 10.8. (Olsson (1980)). The multiplicity of D as a
lower defect group of B 1is equal to dimF BrD(Z(D)).

Finally the theory of lower defect groups offer an
interesting explanation of the elementary divisors of the Cartan matrix of
a block.

We continue to let {](i}, i=l,...,k denote the conjugacy
classes of G such that the first & classes are those consisting of

p-regular elements. Set
1 -
(10) ZQ(G) = Spane{[j(i] ci=1,...,0} ¢ 5lG].

If K, = Spane{g | ¢ e,j(i} < 5[G)] and we let 9[G] act on
1 1,6 1 4
A = 9[G] as before, then ZS(G) = (A7), where A = @ Ki .
i=1

Assume in the following that S 1is a splitting field of G
and let ¢1""’©Q resp. él""'éﬁ denote the irreducible Brauer resp.
indecomposable projective characters, and choose notation so that the first
QB

block of R[GI.

of those lie in the p-block B of G, where B 1is the corresponding
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Choosing £ = R in the following, we have a natural

R-isomorphism
(11) I (Al,R) > A1

given by n > I h(g_l)g. Observe that under the R[G]-action induced

. geGO
on (A ,R),
1 G
(12) (A7,R)™ = SpanR{Ol,---,cl}-
Thus I induces an R-isomorphism
(13) © i oSpan. 0. ,..e,h. b o> 22(B)
- RYY1? 'WB R
where Zl(B) = Zl(G)ﬂ B.
i R R
Let . : R[G] » R be the augmentation map, e.e.,
X(Zagg) = 4o and set ka(b) = A(ba) for all a, b € R[G]. Then

1
(A7,R) = SpanR{Xg g € GO}.

Proposition 10.9. (Broué (1979)) With the notation above,

N e 1.6
i) [((BAT,R)) = (BAT),

.. 1 G
ii) (BA ,R)1 = SpanR{Ql,...,Q }

1,1,6 ‘s
iii) (Ba") ™’ SpanR{¢1""’®£ }/SpanR{Ql,...,él }.
B B

1

Proof: 1) 1is by definiticn as I(ng) = f(n)g_l. To prove ii)

and 1ii1) we first show that Ci € (gAl,R)i for all 1i=l,...,% To see

B
this let Xj e,J<j. It then follows from Theorem I.15.9 iii)e) and

Lemma 8.2 that

. (x.)
r ]

(14) W € R

for all 1i,j. Define Xi € (EAl,k) by

0 @i(xj)
(15) A, = I a=——"~T AX. .
Lg CG(xj)1 ]
& - 1 G
Then b, = L Aig and thus iJi € (BA",R) .
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Thus 1i) will in fact follow from i) and iii) which in turn
will follow if we can prove

whb©

(16) > SpanR{o .,ok}/SpanR{Q RN

17" 1 L

However, from Corollary 8.7 we know that the right hand side is isomorphic

to

(17) Zw(le @ ... ®ZQD<KQ>‘

But so 1s the left hand side, as

.18) SIVRCIPIIE S PRTRPR R CONIY. o5 )

is a basis of (Al)f

Notation. Inspired by Theorem 10.4, let for Q€ P (G) the
number mé(Q) deTote the mu}tiplicity of P(Q) as a
direct summand of BA , where P{(Q) is the R[G]-module corresponding to
P(Q).

Also, we set

(19) ZL(B) = B _ (Al)c
m - Q

Q" <p™
As a corollary of Proposition 10.8, we now have

Theorem 10.9. The following numbers are equal

. 1 1

1) a) = rank (2 (B)/Z__(3))

.. - 1

ii) a, = z i} mB(Q)

Qi <p
iii1) The multiplicity ay of pm as an elementary divisor of
the Cartan matrix of B.

Remark: That a1 = a3 goes back to Brauer.
Procf: That a; = ag follows directly from Proposition 10.8

and that a; =3, is by the same argument as that used to prove Theorem 10.4.
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As the last topic we discuss the second question raised in
Section 3. How does one determine the blocks of a group of defect 0 7 We
have already pointed out that this is completely decided by the character
table, but it would be desirable to have a more ring theoretic

characterization of such blocks, such as

Theorem 10.10. (Tsushima (1971b)) Let s be the sum of all
p~elements in G. Then sf equals the sum of all block idempotents of
defect 0. 1In particular, the number of such blocks is equal to

dimF(Slz(F[G]))'

Before we embark on the proof, we recall some facts. Denote
the radical of F[G] by J. Recall (Lemma I.8.3) that the annihilator

of J 1is the socle S1 of F[G] as an F[G]-module.

If F 1is algebraically closed and E,,...,E denote the
0

1 2
simple F[G]-modules, then F[G]/J = @& A, as an algebra, where
i=1
A, = (E.,E.) =~ Mat_ (F) with n. = dim_E. Thus the canonical homomorphism
1 1771 n 1 F

F[G] » Ai gives ri;e to a matrix representation corresponding to the
simple module. We then define £ F[G] » F as follows: For x & F[G],
denote the corresponding matrix in Ai’ using the isomorphism above, by
X, and set ti(X) = tr(é), the sum of all diagonal elements in X. Note
that if x 1is a p-regular element and ¢i is the Brauer character

defined by Ei’ then
(20) ti(x) = a;(x) 1= éi(x) + (7).

Thus tl,...,tﬂ are linearly independent as class functions on G the

2 0’
p-regular elements of G, by Corollary 8.3.

Following Tsushima (1971a) we now have
Lemma 10.11. With the notation above,

iy ti(g'l>gss1 for all 1.
g€G
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*
Proof: i) Let ) € FIG] denote the augmentation map

and set Aa(x) = 3(xa) for all x € F[G]. Then ti = A

1° c.

2] > 0
gg i

for some Ci.e F[G] by Theorem I.6.3. Moreover, if c, = Zagg,

L

-1 -1 -
(21) ug = A(cig ) = (g Ci) = ti(g
-1 .
= = = ) i L= b
and thus c; Zti(g )g. Finally, as O ti(J) \(Jcl), Jsl 0 by

Lemma I.6.10 and thus e Sl'

ii) As tyseeenty are linearly independent on GO’ there
exists YotV € F such that ZYiti(x) =0 for xé& GO\{I}, while
Zyiti(l) # 0. Furthermore, if g = gpg' is the p-decomposition of g,

e

we have that ti(g) = ti(g'). Now let 1=x ceeaXy be representatives of

1’
the p-regular conjugacy classes, and let Sj be the sum of all elements
2
in G, whose p'-part is =x.. Then c¢. = I t.(x.)s., and it follows
] 1 j=1 LN N
that
2 2 2
(22) I v.c, = L I y.t.(x.)ec.=1Iy.t.(1)s
j-1 i i=1 j=1 11737 7] i1 1

and we are done.

Remark: A similar argument shows of course that 5. € S1 for

. . ’ . e 1
all i The ideal generated by the s s 1s called Reynolds ideal, and

it is now an easy exercise to prove that Reynolds' ideal equals

51.
For more on this, see Reynolds (1972), O'Reilly (1974) and Olsson {1980).

Proof of Theorem 10.10: If F 1is the algebraic closure of F,

then Sl(F[G]) = Sl(F[G]) Lo F, and if e € F[G] 1is a block idempotent
with D as defect group then e is a sum of block idempotents in FL73]
with D as defect group. Thus it suffices to prove the theorem in the

case where F 1is algebraically closed.

Let §1 be the corresponding element in R[G] and let

be a centrally primitive idempotent decomposition in R[G]

1= Zei + Le
where the ei 's all have non-trivial defect groups while the gg 's all
have trivial defect groups. Then the €; 's are precisely those
idempotents in the decomposition above which remains primitive in S[GI.
Let XH be the irreducible character corresponding to eg. Then

et = w}(gl)eg, where wg is the corresponding central character, as
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§1 € 2(s[Gl). However, as Xg is in a block of defect O, w} is zero

on any class sum of proper p-elements and thus “3<§1) = 1. It follows that

= Sel’ el
(23) ) slkdvi + Ze
and thus
2 2,
= (7e1Y 4 Tan
(24) s 5 (2es z

et . =
However, sl(sl(hei)) € Sl J =0 and thus
(25) s, = L

Recently, Robinson (1983) has added an interesting contribution
to the problen of cdeciding the existence of p-blocks which we will discuss

briefly. For other results in this direction, see Willems (1978).

Let P €& Sylp(G) and let D be a normal p-subgroup of G
where we include the case D = 1. Let {xl,...,xr} be a complete set of
representatives of those conjugacy classes of p-regular elements in G
which have defect group D. Set P G/P = {gj}T , where the gj 's are

chosen wherevery possible to satisfy simultaneously
i) gj is p-regular
ii) D e syl (C.(g.)
y p G gJ
8]
iii}) PN P =D,
Now we choose notation so that the first m gj 's satisfy

condition i), ii) and iii) and the rest not. If m # 0, we define an

r x m matrix N with entries in CGF(p) as follows: for i=l,...,r,
j=1l,...,m, nij is the residue mod p of the number of conjugates of X

in ngP<D). If m=0, we set N = {0}. Then

Theorem 10.12. (Robinson (1983)) The number of blocks of G

with D as defect group is the rank of the matrix NNT.

For a proof, see Robinson (1983).
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Note that this extends Corollary 10.2. A striking consequence
of Robinson's Theorem is that if p =2 and P is T. I in G (i.e.
PNPE=1 for g€6, g¢ N,(P)) then G has a block of defect 0 if

G has a p-regular element with 1 as defect group.

It would be interesting if these ideas would eventually yield

a direct proof of the following interesting question.

Let G be a finite group with a cyclic Sylow p-subgroup Q
which is T. I. Then one of the following holds

i) QAP

ii) F{6] has a block of defect O.

Recently, Michler (1983) has proved that in a minimal counter
example, P = Zp and self-centralizing, and G 1is simple. Using the
classification of the simple groups, he is then able to reach a

contradiction, thus providing an affermative answer to the question.
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Appendix I: Extensions.

We will here briefly explain, why the important group defined
in Chapter I, Section 10 (or vector space if we work with a group algebra)
is called Ext. 1In fact, this has already been suggested by Lemma I.10.7.
But first we mention the induced long exact sequences for Ext.

Given a short exact sequence of A-modules for some ring A
(1) 0+x3Y5z-0

we recall the fundamental fact that for any A-module M, the induced

SeqUenCeS
* *

2) 0+ o,y ant s W,
i €

(3) 0> (z,0% & am® Foamt

are exact as well. This is part of the following.

Proposition 1. (Long exact sequences of Ext.) Given (1),

there exists natural exact sequences
A Ae A 1 1
4) 0+ N, )" % N,V S W, » Ext, (N,X) = Ext, (N,¥)

> Extz(N,Z) > Exti(N,X) .

and similar starting with (3).



For the proof of this, we refer the reader to Rotmann (1979) or
Hilton and Stambach (1971).

Let us now briefly discuss why the notation Ext has been
chosen. For details see Rotmann (1979), which is the inspiration for the

following (see also Curtis and Reiner (1981).

Given the exact sequence (1), the module Y (or the whole
sequence) 1s called an extension of Z by X. Two such extensions are

called equivalent if there is a commutative diagram
/Y1\
” O———’X\\\\\\\\ i//////;rz_—_—>0
Y2

Note that ¢ 1is necessarily an isomorphism (this is a consequence of The
Five Lemma in general, but trivial if A is a finite dimensional algebra)
and consequently this defines an equivalence relation. Thus equivalent
extensions have isomorphic "middle" modules. The converse is not always
true.

Now assume for convenience that the projective cover of an
A-module is well-defined, and denote the projective cover of Z by PZ.

Then
o 3
(6) 0->Qz->pP »>»Z~>0
induces for any module X,
) 0+ (2,0 > (20" > @2,0% » Ext}(2,%) + 0

by definition,as Exti(Pz,X) = 0. For any 0 € (QZ,X)A we next form the
pushout Y of the pairs (a,0),

(8) g g’
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As the reader may recall, this is done in the following way: In X ® P,

define

(9) W= {o(z) - alz)|x € Qz2}.

Now set Y = (X © PZ)/W and define o' : PZ > Y by o'(x) = (x,0) + W
and o' : X+ Y by a'(z) = (0,z) + W. We then obtain a commutative
diagram

o
0-—=>QZ—>P

(10) o} o' Z—=0

Thus each o € (QZ,X)A determines an extension of Z by X. It is now

1 and g, in (.QZ,Y)A determine equivalent

*
extensions if and only if 0=0,€& & ((PZ,X)A). Thus each element of

easy to prove that 0

Exti(Z,X) determines an equivalence class of extensions of Z by X
uniquely.

Conversely, let (1) be given. Then there exists ¢'€g (PZ,Y)A
such that

o
0—=0Z—>P

(11) ‘it\\\‘z—+>o
A

O—-—*X-—{—Y

commute, as PZ is projective. As 1 1is injective, this defines

c € (QZ,X)A such that 1i°0 = g'°q. Thus the extension (1) may be

obtained as above from o.
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AREendix IT: Tor.

Here we explain why the Tor groups are not defined or used
in this book. This may be superfluous as the reader who already knows
Tor will be aware of the explanation for that while the reader who is not
will notice the conclusion which is that he or she may just as well remain
in the dark as far as modules over group algebras are concerned.

For the first definition, let 6 be a principal ideal domain,
and let X, YE& Me(G). Recall that the tensor product of X and Y over
the ring 6[G] 1is defined as

(1) Xe, ¥=Xa Y/Spane{xg 8y - X8 ygl.

In other words,

(2) Xy =Xas Y/((X & Y)A(G))

where A(G) 1is the augmentation ideal of 6[G]. Thus X B, ¥ is

merely the maximal 6[G]-factor module with trivial G-action,
i e G . .
Definition 1. Torl(X,Y) is defined by

(3) 0~ Torf(X,Y) > X 8. Y > PX 8. Y > X 8 Y >0

G G

where PX is the projective cover of ¥ 1if this is well-defined or
otherwise in general PX is any projective module mapping onto X with

QX defined as the kernel of this map.
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To make it as short and painless as possible, assume now that

O =F 1s a field. Thus

G

(4) (X 8 Y, F) = (X & Y, F)

where F 1is considered as the trivial F[G]-module.
Lemma 2. There is a natural isomorphism

G 1 *
(5) (Tor '(X,Y),F) = Ext (A,B ).

. G G *
In particular, Torl(X,Y) ~ Extl(X,Y ) as F-spaces.

Proof: By Definition 1 and Lemma IT.2.7,

(X = Y,F)l’c

12

(Torf(X,Y),F)

ES
ox,x H©

12

by Theorem II.6.10

12

Exté(X,Y)l’G

by Corollary II.2.6.
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Appendix III: Extensions of the ring of coefficients.

It has been a deliberate aim to avoid assumptions on the
p-modular system (F,R,S) supplying the rings of coefficients whenever
possible and to avoid the discussion of what happens when the ring of
coefficients is extended.

Sometimes though, a proof becomes much more transparent by
passing to a splitting field which allows us to take advantage of the
orthogonality relations. For completeness, let us recall that if A 1is a
finite dimensional algebra over the field K, then K 1is called a
splitting field of A if the Wedderburn components of A/J(A) are all
matrix algebras over K and not just some division ring containing K.

For an excellent discussion of various important aspects of
passing from a smaller field to a larger, we refer the reader to Chapter 9
of Isaacs (1976). In particular, we refer to Theorem (9.21) for a proof
of the fact that in characteristic p, Schur indices are always 1.

Following Feit (1982), Chapter I, Section 18, we call R an
extension of R if R is a principal ideal domain and local, free as an
R-module and J(fi)e = ﬁn for some e, the socalled ramification index of

~

R.

Let 6 equal R or F. Then an indecomposable #[G]-module

M is called absolutely indecomposable if for any finite extension § of

6, M By 6 is indecomposable.
We have taken advantage of the following useful criterion for

absolute indecomposability.

Lemma 1. Let ME HG(G) be indecomposable. Assume
(M,M)G/J((M,M)G) = F. Then M 1is absolutely indecomposable.
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. G
Proof: (See Feit (1982), p.72). Set E = (M,M) and
E=E a, 2= M g, g, M e, Q)G. Then J(@)@ c J(é) c J(E). In particular,
J(G)E c J(E). As J(E) a, 5/J(5)E is a nilpotent ideal in E/J(G)E, we

moreover have that J(E) 8 G g'J(g). But

(1) E/J(E) 8, € = 5/3(0)0
which is a local ring. As J(E) 85 4 c J(ﬁ), so is
(2) E/J(E) = 0/3(8)

therefore, and thus the unity of E is primitive by Theorem I.11.2, which

shows that M 85 5 1s indecomposable.

For a discussion of this and the converse, which is not always

true, see Huppert (1975).

The next question is: How do vertices behave under extensions?

Very well, indeed:

Lemma 2. Same notation as above. Let M€ MQ(G) be
indecomposable, and set M. = M @, (. Then any indecomposable summand of

M. has the same vertices as M.

Proof: (Erdmann (1977a),p.678). Let V be a vertex of M,
and let X be an indecomposable direct summand of M.. As inducing and
tensoring with a commute, X 1s V-projective. Suppose X 1is
W-projective for some W < V. Then the idfntity on X, e, considered as

C -
an element of (M.,M.) = (M,M)G g, © = (M ,M)G belongs to (MA,MA)é ,

G W 7
say e = Trw(d) for o &€ (M~,Ma) . So o = Zriai for ay c (M,M)“ and
. € 9. Therefore
G N ~n G
(3) e € (M,M)w B, 6€ M7

G . .
However, (M,M)w Q:J((M,M)G) as (M,M)G is local, and M 1is not

W-projective. This is a contradiction, as e 1is an idempotent.

Finally, block idempotents behave just as well.
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Lemma 3., Same notation as above. Let e & 5[G] be a block

idempotent and let e = Zei be a decomposition of e into a sum of block

idempotents in 8{G]. Then the defect groups of e, are those of e.

Proof: Exercise. (One possibility is to use Lemma 2 and
Corollary TII.5.3.)
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